print("总平均帧率\t", frames / (time.time() - initTime))
# 释放cap和rknn线程池
cap.release()
cv2.destroyAllWindows()
pool.release()
这是在不同线程数下视频推理的帧率:
测试模型来源 yolov5s,激活函数为silu(非relu优化版本)
resnet18_for_rk3588, resnet26, resnet50
测试视频为
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
yolov5s | 13.4159 | 26.0832 | 35.8814 | 38.1729 | 43.2117 | 45.5549 | 45.2401 | 45.5819 | 46.4229 |
resnet18 | 288.91 | 483.83 | 577.60 | ||||||
resnet26 | 233.16 | 394.83 | 420.10 | ||||||
resnet50 | 186.17 | 259.88 | 284.49 |
resnet50在9线程下的NPU占用率:
可以看到此时NPU的性能发挥到近乎极致,其推理性能约为280帧
- yolov5s在6线程下NPU利用率仅有50 - 60%左右, 性能劣化原因猜想:
- python的GIL为伪多线程, 换为c++或许在8线程前仍有较大提升
- rk3588的CPU性能跟不上, 对OpenCV绘框部分做c++优化或许有提升
完整代码
可移步rknn多线程获取yolov5s, resnet26, resnet50的rknn模型、完整代码和演示视频
main.py
import cv2
import time
from rknnpool import rknnPoolExecutor
# 图像处理函数,实际应用过程中需要自行修改
from func import myFunc
cap = cv2.VideoCapture('./video/islandBenchmark.mp4')
# cap = cv2.VideoCapture(0)
modelPath = "./rknnModel/yolov5s.rknn"
# 线程数
TPEs = 6
# 初始化rknn池
pool = rknnPoolExecutor(
rknnModel=modelPath,
TPEs=TPEs,
func=myFunc)
# 初始化异步所需要的帧
if (cap.isOpened()):
for i in range(TPEs + 1):
ret, frame = cap.read()
if not ret:
cap.release()
del pool
exit(-1)
pool.put(frame)
frames, loopTime, initTime = 0, time.time(), time.time()
while (cap.isOpened()):
frames += 1
ret, frame = cap.read()
if not ret:
break
pool.put(frame)
frame, flag = pool.get()
if flag == False:
break
cv2.imshow('test', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if frames % 30 == 0:
print("30帧平均帧率:\t", 30 / (time.time() - loopTime), "帧")
loopTime = time.time()
print("总平均帧率\t", frames / (time.time() - initTime))
# 释放cap和rknn线程池
cap.release()
cv2.destroyAllWindows()
pool.release()
rknnpool.py
from queue import Queue
from rknnlite.api import RKNNLite
from concurrent.futures import ThreadPoolExecutor, as_completed
def initRKNN(rknnModel="./rknnModel/yolov5s.rknn", id=0):
rknn_lite = RKNNLite()
ret = rknn_lite.load_rknn(rknnModel)
if ret != 0:
print("Load RKNN rknnModel failed")
exit(ret)
if id == 0:
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0)
elif id == 1:
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_1)
elif id == 2:
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_2)
elif id == -1:
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)
else:
ret = rknn_lite.init_runtime()
if ret != 0:
print("Init runtime environment failed")
exit(ret)
print(rknnModel, "\t\tdone")
return rknn_lite
def initRKNNs(rknnModel="./rknnModel/yolov5s.rknn", TPEs=1):
rknn_list = []
for i in range(TPEs):
rknn_list.append(initRKNN(rknnModel, i % 3))
return rknn_list
class rknnPoolExecutor():
def __init__(self, rknnModel, TPEs, func):
self.TPEs = TPEs
self.queue = Queue()
self.rknnPool = initRKNNs(rknnModel, TPEs)
self.pool = ThreadPoolExecutor(max_workers=TPEs)
self.func = func
self.num = 0
def put(self, frame):
self.queue.put(self.pool.submit(
self.func, self.rknnPool[self.num % self.TPEs], frame))
self.num += 1
def get(self):
if self.queue.empty():
return None, False
temp = []
temp.append(self.queue.get())
for frame in as_completed(temp):
return frame.result(), True
def release(self):
self.pool.shutdown()
for rknn_lite in self.rknnPool:
rknn_lite.release()
func.py
#以下代码改自https://github.com/rockchip-linux/rknn-toolkit2/tree/master/examples/onnx/yolov5
import cv2
import numpy as np
from rknnlite.api import RKNNLite
QUANTIZE_ON = True
OBJ_THRESH, NMS_THRESH, IMG_SIZE = 0.25, 0.45, 640
CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
"fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
"bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
"pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
"oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def xywh2xyxy(x):
# Convert [x, y, w, h] to [x1, y1, x2, y2]
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def process(input, mask, anchors):
anchors = [anchors[i] for i in mask]
grid_h, grid_w = map(int, input.shape[0:2])
box_confidence = sigmoid(input[..., 4])
box_confidence = np.expand_dims(box_confidence, axis=-1)
box_class_probs = sigmoid(input[..., 5:])
box_xy = sigmoid(input[..., :2])*2 - 0.5
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
grid = np.concatenate((col, row), axis=-1)
box_xy += grid
box_xy *= int(IMG_SIZE/grid_h)
box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
box_wh = box_wh * anchors
box = np.concatenate((box_xy, box_wh), axis=-1)
return box, box_confidence, box_class_probs
def filter_boxes(boxes, box_confidences, box_class_probs):
"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
# Arguments
boxes: ndarray, boxes of objects.
box_confidences: ndarray, confidences of objects.
box_class_probs: ndarray, class_probs of objects.
# Returns
boxes: ndarray, filtered boxes.
classes: ndarray, classes for boxes.
scores: ndarray, scores for boxes.
"""
boxes = boxes.reshape(-1, 4)
box_confidences = box_confidences.reshape(-1)
box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
_box_pos = np.where(box_confidences >= OBJ_THRESH)
boxes = boxes[_box_pos]
box_confidences = box_confidences[_box_pos]
box_class_probs = box_class_probs[_box_pos]
class_max_score = np.max(box_class_probs, axis=-1)
classes = np.argmax(box_class_probs, axis=-1)
_class_pos = np.where(class_max_score >= OBJ_THRESH)
boxes = boxes[_class_pos]
classes = classes[_class_pos]
scores = (class_max_score * box_confidences)[_class_pos]
return boxes, classes, scores
def nms_boxes(boxes, scores):
"""Suppress non-maximal boxes.
# Arguments
boxes: ndarray, boxes of objects.
scores: ndarray, scores of objects.
# Returns
keep: ndarray, index of effective boxes.
"""
x = boxes[:, 0]
y = boxes[:, 1]
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
areas = w * h
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x[i], x[order[1:]])
yy1 = np.maximum(y[i], y[order[1:]])
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
inter = w1 * h1
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= NMS_THRESH)[0]
order = order[inds + 1]
keep = np.array(keep)
return keep
def yolov5_post_process(input_data):
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
boxes, classes, scores = [], [], []
for input, mask in zip(input_data, masks):
b, c, s = process(input, mask, anchors)
b, c, s = filter_boxes(b, c, s)
boxes.append(b)
classes.append(c)
scores.append(s)
boxes = np.concatenate(boxes)
boxes = xywh2xyxy(boxes)
classes = np.concatenate(classes)
scores = np.concatenate(scores)
nboxes, nclasses, nscores = [], [], []
for c in set(classes):
inds = np.where(classes == c)
b = boxes[inds]
c = classes[inds]
s = scores[inds]
keep = nms_boxes(b, s)
nboxes.append(b[keep])
nclasses.append(c[keep])
nscores.append(s[keep])
if not nclasses and not nscores:
return None, None, None
boxes = np.concatenate(nboxes)
classes = np.concatenate(nclasses)
scores = np.concatenate(nscores)
return boxes, classes, scores
def draw(image, boxes, scores, classes):
for box, score, cl in zip(boxes, scores, classes):
top, left, right, bottom = box
# print('class: {}, score: {}'.format(CLASSES[cl], score))
# print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
top = int(top)
left = int(left)
right = int(right)
bottom = int(bottom)
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
(top, left - 6),
cv2.FONT_HERSHEY_SIMPLEX,
0.6, (0, 0, 255), 2)
def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - \
new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2