一、拆分 map 和 array
1.执行Linux命令
cd /data/import/
sudo vi test_explode_map_array.txt
- 添加以下文件内容
小明 产品1,产品2,产品3 性别:男,年龄:24
小花 产品4,产品5,产品6 性别:女,年龄:22
2.创建表并加载数据
-- 开启智能本地模式
-- set hive.exec.mode.local.auto=true;
-- 创建表
create table test.test_explode_map_array(
name string,
prod_arr array<string>,
info_map map<string, string>)
row format delimited
-- 字段分隔符为'\t'
fields terminated by '\t'
collection items terminated by ','
map keys terminated by ':'
stored as textfile;
-- 加载数据(方法一)
load data local inpath '/data/import/test_explode_map_array.txt'
into table test.test_explode_map_array;
-- 加载数据(方法二)
insert into test.test_explode_map_array
select '小明', array('产品1', '产品2', '产品3'), str_to_map('性别:男,年龄:24');
insert into test.test_explode_map_array
select '小花', array('产品4', '产品5', '产品6'), str_to_map('性别:女,年龄:22');
3.查询结果1
map_key | map_value |
年龄 | 24 |
性别 | 男 |
年龄 | 22 |
性别 | 女 |
select
-- explode拆分后必须加括号
explode(info_map) as (map_key, map_value)
from test.test_explode_map_array;
-- 查询其他字段, lateral view(侧视图, 虚拟表)
select
name, map_key, map_value
from test.test_explode_map_array
-- 必须去掉括号map_key, map_value
lateral view explode(info_map) tmp_table as map_key, map_value;
4.查询结果2
prod_arr_new |
产品1 |
产品2 |
产品3 |
产品4 |
产品5 |
产品6 |
select
-- explode拆分数组
explode(prod_arr) as prod_arr_new
from test.test_explode_map_array;
5.查询结果3
name | prod_arr_new |
小明 | 产品1 |
小明 | 产品2 |
小明 | 产品3 |
小花 | 产品4 |
小花 | 产品5 |
小花 | 产品6 |
-- 查询其他字段,lateral view(侧视图, 虚拟表)
select
name, prod_arr_new
from test.test_explode_map_array
lateral view explode(prod_arr) tmp_table as prod_arr_new;
6.Hive三类UDF
- UDF:用户自定义函数(user-defined function),输入一个值,返回一个值,一进一出
- UDAF:用户自定义聚合函数(user-defined aggregate function),输入多个值,返回一个值,多进一出
- UDTF:用户自定义表生成函数(user-defined table-generating function),输入一个值,返回多个值,一进多出
-- UDF:length\year\month\day ...
-- UDAF:sum\count\max ...
-- UDTF:explode
二、拆分 json
1.执行Linux命令
cd /data/import/
sudo vi test_explode_json.txt
- 添加以下文件内容
a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]
2.创建表并加载数据
-- 开启智能本地模式
-- set hive.exec.mode.local.auto=true;
-- 创建表
create table test.test_explode_json(
area string,
goods_id string,
sale_info string)
row format delimited
-- 字段分隔符为'|'
fields terminated by '|'
stored as textfile;
-- 加载数据(方法一)
load data local inpath '/data/import/test_explode_json.txt'
overwrite into table test.test_explode_json;
-- 加载数据(方法二)
insert into test.test_explode_json
values('a:shandong,b:beijing,c:hebei',
'1,2,3,4,5,6,7,8,9',
'[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]')
3.查询结果1
goods_id |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
select
explode(split(goods_id,',')) as goods_id
from test.test_explode_json;
4.查询结果2
code | area |
a | shandong |
b | beijing |
c | hebei |
select
regexp_extract(area_new, '(.*):(.*)',1) as code
, regexp_extract(area_new, '(.*):(.*)',2) as arec
from test.test_explode_json
lateral view explode(split(area,',')) tmp_table as area_new
5.侧视图详解
lateral view + explode + split
结果集的行数是如何生成的?
- 查询1个字段
-- 9个元素= 9行
select
goods_id_new
from test.test_explode_json
lateral view explode(split(goods_id,',')) tmp_table as goods_id_new;
- 查询2个字段
-- 9个元素*1个元素 = 9行
select
goods_id_new,area
from test.test_explode_json
lateral view explode(split(goods_id,',')) tmp_table as goods_id_new;
- 查询3个字段
-- 9个元素*3个元素*1个元素=27行
select
goods_id_new,area_new,sale_info
from test.test_explode_json
lateral view explode(split(goods_id,',')) tmp_table as goods_id_new
lateral view explode(split(area,',')) tmp_table as area_new;
6.查询结果3
source | monthsales | usercount | score |
7fresh | 4900 | 1900 | 9.9 |
jd | 2090 | 78981 | 9.8 |
jdmart | 6987 | 1600 | 9.0 |
- 第一步:将字段sale_info的"[{"和"}]"替换为空字符串
"[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]"
select
regexp_replace(sale_info, '\\[\\{|\\}\\]','')
from test.test_explode_json
- 第二步:以"},{"拆分为数组
select
explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{'))
from test.test_explode_json
- 第三步:将数组拆分为多行
select
sale_info_new
from test.test_explode_json
lateral view explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{')) tmp_table as sale_info_new
- 第四步:转换为json字符串
select
concat('{', sale_info_new, '}')
from test.test_explode_json
lateral view explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{')) tmp_table as sale_info_new
- 第五步:将json字符串转换为二维表
select
get_json_object(concat('{', sale_info_new, '}'), '$.source') as source
, get_json_object(concat('{', sale_info_new, '}'), '$.monthSales') as monthSales
, get_json_object(concat('{', sale_info_new, '}'), '$.userCount') as userCount
, get_json_object(concat('{', sale_info_new, '}'), '$.score') as score
from test.test_explode_json
lateral view explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{')) tmp_table as sale_info_new
三、多行(列)合并为一行(列)
region_category | subclass |
东北-办公 | 系固件,纸张,收纳具,信封,器具,美术,用品,装订机,标签 |
东北-家具 | 用具,椅子,桌子,书架 |
东北-技术 | 电话,配件,复印机,设备 |
-- concat(str1|col1, str2|col2, …)
-- 字符串合并,支持任意个字符串;
-- concat_ws(sep, str1, str2, ...)
-- 以sep为分隔符合并str1, str2, ...;如分隔符为null,则返回null;跳过合并值为null或空字符串的参数;
-- collect_set(col)去重汇总
-- 只支持基本数据类型(不支持复合数据类型),将某字段的项去重汇总,返回array数据类型;
-- collect_list(col)不去重汇总
select
CONCAT(region, '-',category) as region_category
, concat_ws(',', collect_set(subclass)) as `产品子类`
from sm.sm_order_total
group by CONCAT(region, '-',category)
四、一行(列)拆分为多行(列)
-- 通过以上查询语句来创建表
create table test.test_explode_split as
select
CONCAT(region, '-',category) as region_category
, concat_ws(',', collect_set(subclass)) as `产品子类`
from sm.sm_order_total
group by CONCAT(region, '-',category)
region | category | subclass_new |
东北 | 办公 | 系固件 |
东北 | 办公 | 纸张 |
东北 | 办公 | 收纳具 |
东北 | 办公 | 信封 |
东北 | 办公 | 器具 |
东北 | 办公 | 美术 |
东北 | 办公 | 用品 |
东北 | 办公 | 装订机 |
东北 | 办公 | 标签 |
select
regexp_extract(t.region_category, '(.*)-(.*)', 1) as region
, regexp_extract(t.region_category, '(.*)-(.*)', 2) as category
, subclass_new
from test.test_explode_split t
lateral view explode(split(t.subclass, ',')) tmp_table as subclass_new;
五、reflect函数
- 支持调用java函数
1.执行Linux命令
cd /data/import/
sudo vi test_reflect.txt
- 添加以下文件内容
11 配饰 7 7
12 配饰 9 5
13 配饰 5 7
14 服饰 9 5
15 服饰 9 4
16 配饰 7 5
17 服饰 8 3
18 配饰 6 5
19 服饰 5 4
20 配饰 9 4
2.调用java的max函数求两列最大值
use test;
-- 创建表
create table test.test_reflect(
order_id int comment '订单编号',
product string comment '产品',
quality int comment '质量',
service int comment '服务')
row format delimited
fields terminated by '\t';
-- 加载数据
load data local inpath '/data/import/test_reflect.txt'
into table test.test_reflect;
select
*
, reflect('java.lang.Math','max',quality, service) as max_score
from test.test_reflect
3.不同的行执行不同的java函数
- 配饰:求最大值
- 服饰:求最小值
select
t.order_id
, t.product
, t.quality
, t.service
, reflect('java.lang.Math', method_name, t.quality, t.service) as score
from
(
select
order_id
, product
, quality
, service
, case product when '配饰' then 'max'
when '服饰' then 'min' end as method_name
from test.test_reflect
) as t