事实证明,在时序数据场景下,无论是在存储空间、写入速度还是查询性能等各方面,TDengine 都存在数量级优势。

MySQL 是中国开发者最熟悉的开源数据库产品,在很多开发者心中 MySQL 就是关系数据库的代名词。开发者们对 MySQL 数据库的的特性已经非常熟悉了。

TDengine (https://github.com/taosdata/TDengine)是完全面向处理时序数据而设计的数据库,是数据库领域的“新物种”,也就是所谓的时序数据库(Time Series Database,简称 TSDB)。TDengine 在创立伊始,就坚定地走兼容 SQL 的路线,这极大地降低了数据库用户的使用门槛,但是另一方面,时序数据和关系数据库的处理方式还是有些区别,所以熟悉 MySQL 的用户在入手 TDengine 的时候会有一些混淆。所以,我们专门撰写了这篇文章,希望可以帮助广大熟悉 MySQL 数据库的开发者更快地上手 TDengine。

但同时我们也要指出,TDengine 是专门为处理时序数据而设计的产品,并不适合存储非时序类型数据,在实际应用中,可以结合关系型数据库一起使用。

注:本文以最新的 TDengine 3.0.1.4 版本为例。

时序数据建模

用 MySQL 关系型数据库给时序数据建模

为了方便大家理解,我们先用大家熟悉的关系型数据库进行建模。建模的场景是我们要采集一万个电表的数据,每个电表有自己的设备 ID(device_id),有所在的位置(location),电表有不同型号(group_id)。每次采集我们要记录当时的时间戳(ts)、电表的电流(current)、电压(voltage)、相位(phase)三个数据。

创建数据库的 SQL 语句:

CREATE SCHEMA `test`;

表 meters

字段

数据类型

长度(字节)

索引

说明

device_id

VARCHAR

8

PK,FK_meters_devices

设备 id,外键关联 devices.device_id

ts

TIMESTAMP(3)

6

PK

时间戳,每个设备产生的时序记录时间戳唯一,所以 device_id 和 ts 创建联合主键。指定精度到毫秒。

current

FLOAT

4

 

电流值

voltage

INT

4

 

电压值

phase

FLOAT

4

 

相位值

创建表 meters 的 SQL 语句:

CREATE TABLE `test`.`meters` (
`device_id` VARCHAR(8) NOT NULL,
`ts` TIMESTAMP(3) NOT NULL,
`current` FLOAT NULL,
`voltage` INT NULL,
`phase` FLOAT NULL,
PRIMARY KEY (`device_id`, `ts`),
CONSTRAINT `FK_meters_devices`
FOREIGN KEY (`device_id`)
REFERENCES `test`.`devices` (`device_id`));

表 devices

字段

数据类型

长度(字节)

索引

说明

device_id

VARCHAR

8

PK

设备 id

location

VARCHAR

24

IDX_location

location 是设备的属性

group_id

INT

4

IDX_group_id

group_id 是设备的属性

创建表 devices 的 SQL 语句:

CREATE TABLE `test`.`devices` (
`device_id` VARCHAR(8) NOT NULL,
`location` VARCHAR(24) NOT NULL,
`group_id` INT NOT NULL,
PRIMARY KEY (`device_id`),
INDEX `IDX_location` (`location` ASC),
INDEX `IDX_group_id` (`group_id` ASC));

把 MySQL 建模转换成 TDengine 建模

我们来对比看看 TDengine 的建模和 MySQL 有什么不同。让我们先引入 TDengine 的两个概念:

1、一个设备采集点一张表

根据这一设计,device_id 就是子表名称。location 和 group_id 我们作为子表的 TAG。主键:在 TDengine 中,表的第一个字段必须是 TIMESTAMP 类型,并且会被自动设置为主键。

2、超级表与子表

在一个设备采集点一张表的设计理念下,对应设备的数量,会出现成千上万乃至上亿张表,TDengine 为此又引入了“超级表”和“子表”两个概念,它们有如下几个主要特征:

  • 超级表是子表的模板,定义了子表的数据结构,所有子表都是由超级表“派生”出来,修改超级表结构就是修改所有子表结构;
  • 基于超级表可以轻松进行分组聚合查询,查出每个子表的聚合计算后的数据,如:查询每个电表的总用电量;
  • 标签(TAG)可以理解为定义在超级表中的字段,每一个子表只有一组标签值,代表一个采集点的静态数据且为内存存储。在 SELECT 语句查询的时候,标签(TAG)值可以像普通字段一样出现在查询结果中。

更多 TDengine 超级表文档请参考:https://docs.taosdata.com/taos-sql/stable/

现在让我们用 TDengine 进行建模,创建数据库的 SQL 语句:

CREATE DATABASE `test`;

然后创建一张超级表:

表 meters

字段

数据类型

长度(字节)

索引

说明

ts

TIMESTAMP

8

PK

时间戳,每个设备产生的时序记录时间戳唯一,所以 device_id 和 ts 创建联合主键

current

FLOAT

4

 

电流值

voltage

INT

4

 

电压值

phase

FLOAT

4

 

相位值

location

VARCHAR

24

 

标签(TAG)

group_id

INT

4

 

标签(TAG)

创建表 metrics 的 SQL 语句:

CREATE STABLE `test`.`meters` (
`ts` TIMESTAMP,
`current` FLOAT,
`voltage` INT,
`phase` FLOAT)
TAGS (
`group_id` INT,
`location` VARCHAR(24));

关于数据类型的对比

数据类型

MySQL

TDengine

TIMESTAMP

默认精度为秒,可以支持到微秒。

默认精度为毫秒。可支持微秒和纳秒,需要在创建数据库时指定。

VARCHAR

存储可变长度的多字节字符串,按字符存储。

存储可变长度的单字节字符串,只用于处理 ASCII 可见字符。VARCHAR 是 BINARY 的别称。

CHAR

存储固定长度的多字节字符串,按字符存储。

不存在。

NCHAR

存储固定长度的多字节字符串,按字符存储。同 CHAR。

存储可变长度的多字节字符串,如中文字符。等同于 MySQL 的 CHAR 和默认字符集(utf8)的 VARCHAR。

VARBINARY

存储可变长度的二进制字符串,按字节存储。

当前版本不存在,后续版本提供。

BINARY

存储固定长度的二进制字符串,按字节存储。

存储可变长度的单字节字符串,只用于处理 ASCII 可见字符。

JSON

存储 JSON 数据结构。

只有标签(TAG)可以用 JSON 类型。

TDengine 数据类型文档请参考:https://docs.taosdata.com/taos-sql/data-type/

关键字和保留词

MySQL 和 TDengine 的关键字/保留词略有不同,所以有些情况下创建表名、字段名时候,需要注意加上反引号 “ 进行转义。举例:

  • TTL 在 TDengine 中是关键字,但在 MySQL 中不是。
  • CURRENT 在 MySQL 中是关键字,但在 TDengine 中不是。

数据插入与更新

下面让我们来体验下数据处理的真实例子:

插入采集数据

MySQL

插入设备数据

按照上面的建模,MySQL 插入数据之前,需要先准备好设备数据,下面我们准备几条:

INSERT INTO `test`.`devices` VALUES ('d1001', 'California.SanFrancisco', 2);
INSERT INTO `test`.`devices` VALUES ('d1002', 'California.SanFrancisco', 3);
INSERT INTO `test`.`devices` VALUES ('d1003', 'California.LosAngeles', 3);

插入采集数据

INSERT INTO `test`.`meters` VALUES ('d1001', '2018-09-08 17:51:04.777', 10.3, 219, 0.31);
INSERT INTO `test`.`meters` VALUES ('d1002', '2018-09-08 17:51:04.777', 10.2, 220, 0.23);
INSERT INTO `test`.`meters` VALUES ('d1003', '2018-09-08 17:51:04.777', 11.5, 221, 0.35);

TDengine

创建子表

因为 TDengine 的设备属性通过标签(TAG)的方式表达,所以在创建子表的时候来定义设备的属性(对应 MySQL 的插入设备数据)。让我们先来创建子表:

CREATE TABLE `test`.`d1001` USING `test`.`meters` (`group_id`, `location`) TAGS (2, "California.SanFrancisco");
CREATE TABLE `test`.`d1002` USING `test`.`meters` (`group_id`, `location`) TAGS (3, "California.SanFrancisco");
CREATE TABLE `test`.`d1003` USING `test`.`meters` (`group_id`, `location`) TAGS (3, "California.LosAngeles");

以上语句的语义是通过使用(USING)超级表`test`.`meters`,来创建对应标签(TAGS)的子表。

插入采集数据

INSERT INTO `test`.`d1001` VALUES ('2018-09-08 17:51:04.777', 10.3, 219, 0.31);
INSERT INTO `test`.`d1001` VALUES ('2018-09-08 17:51:04.777', 10.2, 220, 0.23);
INSERT INTO `test`.`d1001` VALUES ('2018-09-08 17:51:04.777', 11.5, 221, 0.35);

插入采集数据时自动创建子表

TDengine 还有更便捷的方式,可以让创建子表和插入数据在同一条语句中实现:

INSERT INTO `test`.`d1001` USING `test`.`meters` TAGS ('California.SanFrancisco', 2) VALUES ('2018-09-08 17:51:04.777', 10.3, 219, 0.31);

关于写入数据的详细文档,请参考:https://docs.taosdata.com/taos-sql/insert/

更新采集数据

MySQL

我们先来看看 MySQL 如何更新数据:

更新采集数据:

UPDATE `test`.`meters` SET `ts` = '2018-09-08 17:51:07', `current` = 10.4, `voltage` = 220, `phase` = 0.32 WHERE `device_id` = 'd1001' and `ts` = '2018-09-08 17:51:05';

TDengine

TDengine 中没有 UPDATE 语句,但是 TDengine 也支持更新。在 TDengine 中,INSERT 时间戳相同的数据,会更新原有记录:

INSERT INTO `test`.`d1001` VALUES ('2018-09-08 17:51:04.777', 10.4, 225, 0.35);

注意:TDengine 2.x 版本需要在创建数据库时指定 UPDATE 参数,3.x 版本不需要。

更新设备属性

MySQL

我们先来看看 MySQL 建模下如何更新设备属性:

UPDATE `test`.`devices` SET `location` = 'California.LosAngeles', `group_id` = 3 WHERE `device_id` = 'd1001';

TDengine

如前文所述,TDengine 的设备属性存在于标签(TAG)之中,修改设备属性就是修改标签,所以要用修改标签的语句:

ALTER TABLE `test`.`d1001` SET TAG `location` = 'California.LosAngeles';
ALTER TABLE `test`.`d1001` SET TAG `group_id` = 5;

注:标签只可单个修改。

工具与可视化

GUI 工具

MySQL 官方从 5.0 版本开始提供了 MySQL Workbench 这个图形管理工具,目前 TDengine 还未提供官方的 GUI 管理工具,但是因为 TDengine 支持 JDBC 标准驱动,这就让 TDengine 可以通过 JDBC 驱动直接对接目前市面上大量的 SQL IDE 产品,比如 DBeaver、IDEA 等。TDengine 官方也提供了相关文档,供参考:

如何通过开源数据库管理工具 DBeaver 连接 TDengine

 

时序数据库的索引结构 时序数据库 mysql_MySQL

 

如何通过 IDEA 数据库管理工具连接 TDengine?

 

时序数据库的索引结构 时序数据库 mysql_MySQL_02

此外,TDengine 企业版提供了 Taos Explorer,提供专门适配 TDengine 技术架构的完整 GUI 管理工具。如果你想使用 Taos Explorer,也可以直接联系官方企业咨询服务:https://www.taosdata.com/support

可视化

TDengine 官方已经适配了 Grafana,在 Grafana 官方插件库里可以找到,详情请参考 TDengine 官方文档:https://docs.taosdata.com/third-party/grafana/

时序数据库的索引结构 时序数据库 mysql_字符串_03

 

时序数据库的索引结构 时序数据库 mysql_MySQL_04

导入导出工具

MySQL 官方提供了 mysqldump 工具用来进行数据的导入和导出。同样的,TDengine 官方也提供了 taosdump 工具来进行相同的任务。详情请参考官方文档:https://docs.taosdata.com/operation/import/ 和https://docs.taosdata.com/operation/export/

容量与查询性能对比

环境与数据准备

设备环境:MacBook Pro 14 M1 8-core 16GB

MySQL 版本:8.0.28

TDengine 版本:3.0.1.4

我们通过使用 taosBenchmark 工具(https://docs.taosdata.com/reference/taosbenchmark),来随机生成一亿条采集数据,分布在一张超级表 meters 下的一万张子表中,并把相同的数据按上述建模模型导入进 MySQL,确保最后的比对结果一致。

存储空间对比

针对上述数据,MySQL 实际存储空间为 4,931 MB,TDengine 存储空间为 493 MB。

时序数据库的索引结构 时序数据库 mysql_MySQL_05

查询性能对比

典型查询一(COUNT)

SELECT COUNT(*) FROM `test`.`meters`;

MySQL

时序数据库的索引结构 时序数据库 mysql_MySQL_06

TDengine

时序数据库的索引结构 时序数据库 mysql_MySQL_07

总结:TDengine 查询性能是 MySQL 的 50 倍

典型查询二(平均值,最大值、最小值)

SELECT AVG(voltage) FROM `test`.`meters`;
SELECT MAX(voltage) FROM `test`.`meters`;
SELECT MIN(voltage) FROM `test`.`meters`;

注:经过测试,MySQL 和 TDengine 对 AVG()、MAX()、MIN() 函数的查询时间均类似,所以不再额外展示。

MySQL

时序数据库的索引结构 时序数据库 mysql_时序数据库的索引结构_08

TDengine

时序数据库的索引结构 时序数据库 mysql_时序数据库的索引结构_09

典型查询三(条件查询)

MySQL

SELECT COUNT(*) FROM `test`.`meters` m INNER JOIN `test`.`devices` d ON m.device_id = d.device_id WHERE d.location = "California.MountainView";

  

时序数据库的索引结构 时序数据库 mysql_时序数据库的索引结构_10

TDengine

SELECT COUNT(*) FROM `test`.`meters` WHERE location = "California.MountainView";

  

时序数据库的索引结构 时序数据库 mysql_MySQL_11

典型查询四(分组查询)

MySQL

SELECT AVG(m.voltage), d.location FROM `test`.`meters` m INNER JOIN `test`.`devices` d ON m.device_id = d.device_id GROUP BY d.location;

  

时序数据库的索引结构 时序数据库 mysql_MySQL_12

TDengine

SELECT AVG(voltage), location FROM `test`.`meters` GROUP BY location;

  

时序数据库的索引结构 时序数据库 mysql_时序数据库的索引结构_13

典型查询五(时序业务)

MySQL

SELECT DATE_FORMAT(ts, '%Y%m%d-%H') AS date_format, AVG(voltage) FROM `test`.`meters` GROUP BY date_format;

  

时序数据库的索引结构 时序数据库 mysql_数据_14

TDengine

SELECT AVG(voltage) FROM `test`.`meters` INTERVAL(1h);

  

时序数据库的索引结构 时序数据库 mysql_字符串_15

TDengine 的特色功能(时序数据处理)

TDengine 在支持标准 SQL 的基础之上,还提供了一系列满足时序业务场景需求的特色查询语法,这些语法能够为时序场景的应用的开发带来极大的便利。

时间窗口切分查询

TDengine 支持按时间窗口切分方式进行聚合结果查询,比如需查询每隔 1 秒钟的电流平均值。举例:

SELECT _wstart, AVG(current) FROM `test`.`d1001` INTERVAL(1s);

  

时序数据库的索引结构 时序数据库 mysql_数据_16

状态窗口切分查询

使用整数(布尔值)或字符串来标识产生记录时候设备的状态量。产生的记录如果具有相同的状态量数值则归属于同一个状态窗口,数值改变后该窗口关闭。举例:

SELECT COUNT(*), FIRST(ts), voltage FROM `test`.`meters` STATE_WINDOW(voltage) LIMIT 10;

  

时序数据库的索引结构 时序数据库 mysql_MySQL_17

数据保留策略

经过长时间累积大量数据以后,历史数据往往需要做归档或删除处理。MySQL 等关系型数据库只能通过执行计划任务调用 DELETE 语句根据时间条件删除数据。而 TDengine 天生就对数据保留策略提供了支持,一共有三种办法来灵活地处理:

  1. 创建数据库时,设定 KEEP 参数,比如 CREATE DATABASE test KEEP 100d; 表示数据库中的数据在保存 100 天后会被自动删除;
  2. 创建表时,设定 TTL 参数,单位为天,比如 CREATE TABLE meters ... TTL 50; 表示 50 天之后,表会被系统自动删除;
  3. 冷热数据分级存储。在 TDengine 企业版中,支持把数据按照时间维度分别存储于不同的文件句柄,可以对应到不同的存储介质,比如将热数据存储于 SSD 磁盘,将冷数据存储到 S3 存储中。

替代 MySQL 案例分享

事实证明,在时序数据场景下,无论是在存储空间、写入速度还是查询性能等各方面,TDengine 都存在数量级优势。最后,提供一些使用新一代时序数据库 TDengine 替代传统关系性数据库 MySQL 的典型案例供参考:

  • 存储空间降为 MySQL 的十分之一,TDengine 在货拉拉数据库监控场景的应用
  • MySQL 无法满足查询性能?北明天时选择 TDengine 实现热网监控和能源分析
  • 接手被 MySQL 卡死的数据,TDengine 在能源管理系统的应用
  • MySQL 宕机?大数据驱动下的新零售,如何寻求存储计算的最优解?

 



想了解更多 TDengine Database的具体细节,欢迎大家在GitHub上查看相关源代码。