写一下自己对代码及过程的理解吧

实现过程可以大致分为三步:1.函数准备并声明变量  2.对卷积神经网络进行训练  3.对训练好的网络进行测试并得到测试结果

一。准备

import torch

import torch.nn as nn

import torchvision

import torchvision.transforms as transforms    



# Device configuration    设备配置,开始脚本,创建一个张量tensor(需要在训练的过程中,将网络参数都放入多GPU中进行训练)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
#module:需要多GPU训练的网络模型,device_ids:GPU的编号,dim:tensors被分散的维度
#cuda:0代表其实的GPU编号为0(其实默认也为0即直接写cuda)




# Hyper parameters
num_epochs = 5            #训练5遍           重复训练
num_classes = 10          #目标类别
batch_size = 100          #训练批次中,每个批次要加载的样本数量100
learning_rate = 0.001     #学习率


# MNIST dataset           MNIST数据集
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False, 
                                          transform=transforms.ToTensor())
#MNIST(root =存储路径,train =是否属于训练集,transform =转换格式(ToTensor:图像转换为tensor)



# Data loader              数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)
#这是一个迭代器,方便我们去多线程地读取数据,并且可以实现batch以及shuffle的读取等  Dataloader(dataset = Dataset- 从中加载数据的数据集。batch_size为100,shuffle = 是否打乱顺序,默认为否


# Convolutional neural network (two convolutional layers)两个卷积层
class ConvNet(nn.Module):
    #torch.nn.Model 所有神经网络模块的基类
    def __init__(self, num_classes=10):#初始化构造函数: 
        super(ConvNet, self).__init__()
        #继承基类的构造函数,固定写法:super(NewModel, self).__init__()
        self.layer1 = nn.Sequential(
            #torch.nn.Sequential一个连续的容器。模块将按照它们在构造函数中传递的顺序添加到它中
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            #输入维度1*28*28
           #32-5+1=28
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
            #变为深度为16即通道数16*14*14
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)
        #最后成为7*7*32,然后这是全链接层
#torch.nn.Conv2d(in_channels, 输入通道:灰度图像为1,彩色RGB为3
#                   out_channels,   输出通道:与卷积核数量一致
#                   kernel_size,   卷积核尺寸,可以为int或者tuple
#                   stride = 1,  卷积步长(卷积时每次滑过的像素数)
#                   padding = 2, 填充(边缘补两行0))

#前向传播函数  顺序进行,往后走
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out

model = ConvNet(num_classes).to(device)
#module:需要多GPU训练的网络模型


# Loss and optimizer
criterion = nn.CrossEntropyLoss()    
#叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)     
#优化  adam算法,通过optimizer.step()对所有参数进行更新

 

 

对于Adam算法有详细解释

 

 

 

 

二。训练

# Train the model
total_step = len(train_loader)

for epoch in range(num_epochs):     #数据集遍历num-epochs次
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        #PyTorch默认会对梯度进行累加,所以如果不想先前的梯度影响当前梯度的计算,需要手动清0
        loss.backward()#误差反向传播计算参数梯度(loss为标量)
        optimizer.step()#实现 参数更新
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

训练共有四步:

第一步:将输入input向前传播,进行运算后得到输出output

第二步:将output再输入loss函数,计算loss值(是个标量)

第三步:将梯度反向传播到每个参数

第四步:利用下面公式进行权重更新

新权重w =  旧权重w  +  学习速率𝜂  x 梯度向量g

pytorch在反向传播的时候,确实是默认累加上了上一次求的梯度, 如果不想让上一次的梯度影响自己本次梯度计算的话,需要手动的清零

Pytorch反向传播中的细节-计算梯度时的默认累加

Pytorch optimizer.step() 和loss.backward()和scheduler.step()的关系与区别 (Pytorch 代码讲解)

三。训练完了当然是测试了

  

# Test the model
model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)#output.data是100*10的张量
        total += labels.size(0)
        correct += (predicted == labels).sum().item()#将两个一维张量逐行对比,相同的行记为1,不同的行记为0

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

对于测试我们要得到我们训练出来的模型准确率,及测试集中正确数/总数

开始correct = 0,total = 0

将检测图像信息得到output,取张量中每行最大的值,total自加100(batch_size = 100 ),然后逐行比对,若正确correct自加

Epoch [1/5], Step [100/600], Loss: 0.1828
Epoch [1/5], Step [200/600], Loss: 0.1731
Epoch [1/5], Step [300/600], Loss: 0.0575
Epoch [1/5], Step [400/600], Loss: 0.0789
Epoch [1/5], Step [500/600], Loss: 0.0452
Epoch [1/5], Step [600/600], Loss: 0.0387
Epoch [2/5], Step [100/600], Loss: 0.0820
Epoch [2/5], Step [200/600], Loss: 0.0341
Epoch [2/5], Step [300/600], Loss: 0.0506
Epoch [2/5], Step [400/600], Loss: 0.0579
Epoch [2/5], Step [500/600], Loss: 0.0854
Epoch [2/5], Step [600/600], Loss: 0.0559
Epoch [3/5], Step [100/600], Loss: 0.1510
Epoch [3/5], Step [200/600], Loss: 0.0425
Epoch [3/5], Step [300/600], Loss: 0.0277
Epoch [3/5], Step [400/600], Loss: 0.0121
Epoch [3/5], Step [500/600], Loss: 0.0398
Epoch [3/5], Step [600/600], Loss: 0.0249
Epoch [4/5], Step [100/600], Loss: 0.0235
Epoch [4/5], Step [200/600], Loss: 0.0482
Epoch [4/5], Step [300/600], Loss: 0.0197
Epoch [4/5], Step [400/600], Loss: 0.0352
Epoch [4/5], Step [500/600], Loss: 0.0182
Epoch [4/5], Step [600/600], Loss: 0.0133
Epoch [5/5], Step [100/600], Loss: 0.0013
Epoch [5/5], Step [200/600], Loss: 0.0349
Epoch [5/5], Step [300/600], Loss: 0.0080
Epoch [5/5], Step [400/600], Loss: 0.0757
Epoch [5/5], Step [500/600], Loss: 0.0748
Epoch [5/5], Step [600/600], Loss: 0.0775
Test Accuracy of the model on the 10000 test images: 98.85 %