知识图谱的架构
知识图谱的架构包括自身的逻辑结构以及构建知识图谱所采用的技术(体系)架构。
知识图谱的逻辑结构
知识图谱在逻辑上可分为模式层与数据层两个层次,数据层主要是由一系列的事实组成,而知识将以事实为单位进行存储。如果用(实体1,关系,实体2)、(实体、属性,属性值)这样的三元组来表达事实,可选择图数据库作为存储介质,例如开源的Neo4j、Twitter的FlockDB、sones的GraphDB等以及中科天玑自主研发的Golaxy Graph。
模式层构建在数据层之上,是知识图谱的核心,通常采用本体库来管理知识图谱的模式层。本体是结构化知识库的概念模板,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。
知识图谱的体系架构
图2 知识图谱的技术架构
知识图谱的体系架构是其指构建模式结构,如图2所示。其中虚线框内的部分为知识图谱的构建过程,也包含知识图谱的更新过程。
知识图谱构建从最原始的数据(包括结构化、半结构化、非结构化数据)出发,采用一系列自动或者半自动的技术手段,从原始数据库和第三方数据库中提取知识事实,并将其存入知识库的数据层和模式层,这一过程包含:信息抽取、知识表示、知识融合、知识推理四个过程,每一次更新迭代均包含这四个阶段。
知识图谱的构建方式
知识图谱主要有自顶向下(top-down)与自底向上(bottom-up)两种构建方式。自顶向下指的是先为知识图谱定义好本体与数据模式,再将实体加入到知识库。该构建方式需要利用一些现有的结构化知识库作为其基础知识库。
自底向上指的是从一些开放链接数据中提取出实体,选择其中置信度较高的加入到知识库,再构建顶层的本体模式。目前,大多数知识图谱都采用自底向上的方式进行构建,其中最典型就是Google的Knowledge Vault和微软的Satori知识库。现在也符合互联网数据内容知识产生的特点。