数据挖掘和数据分析概述:

数据挖掘和数据分析都是从数据中提取一些有价值的信息,二者有很多联系,但是二者的侧重点和实现手法有所区分。

数据挖掘和数据分析的不同之处:

1、在应用工具上,数据挖掘一般要通过自己的编程来实现需要掌握编程语言;而数据分析更多的是借助现有的分析工具进行。

2、在行业知识方面,数据分析要求对所从事的行业有比较深的了解和理解,并且能够将数据与自身的业务紧密结合起来;而数据挖掘不需要有太多的行业的专业知识。

3、交叉学科方面,数据分析需要结合统计学、营销学、心理学以及金融、政治等方面进行综合分析;数据挖掘更多的是注重技术层面的结合以及数学和计算机的集合。

数据挖掘和数据分析的相似之处:

1、数据挖掘和数据分析都是对数据进行分析、处理等操作进而得到有价值的知识。

2、都需要懂统计学,懂数据处理一些常用的方法,对数据的敏感度比较好。

3、数据挖掘和数据分析的联系越来越紧密,很多数据分析人员开始使用编程工具进行数据分析,如SAS、R、SPSS等。而数据挖掘人员在结果表达及分析方面也会借助数据分析的手段。二者的关系的界限变得越来越模糊。

数据挖掘是数据库中知识发现不可缺少的一部分。

java与数据挖掘 数据与数据挖掘_数据分析


数据挖掘要解决的问题:可伸缩、高维性、异种数据和复杂数据、数据的所有权与分布、非传统的分析。

数据挖掘任务分为两大类:预测任务、描述任务。