高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。 从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。图像与圆形方框模糊做卷积将会生成更加精确的焦外成像效果。由于高斯函数的傅立叶变换是另外一个高斯函数,所以高斯模糊对于图像来说就是一个低通滤波器。

 

pytorch高斯模糊参数设置 高斯模糊优化_pytorch高斯模糊参数设置

那么具体如何实现呢?

代码献上:

inline int* buildGaussKern(int winSize, int sigma)
{
	int wincenter, x;
	float   sum = 0.0f;
	wincenter = winSize / 2;
	float *kern = (float*)malloc(winSize*sizeof(float));
	int *ikern = (int*)malloc(winSize*sizeof(int));
	float SQRT_2PI = 2.506628274631f;
	float sigmaMul2PI = 1.0f / (sigma * SQRT_2PI);
	float divSigmaPow2 = 1.0f / (2.0f * sigma * sigma);
	for (x = 0; x < wincenter + 1; x++)
	{
		kern[wincenter - x] = kern[wincenter + x] = exp(-(x * x)* divSigmaPow2) * sigmaMul2PI;
		sum += kern[wincenter - x] + ((x != 0) ? kern[wincenter + x] : 0.0);
	}
	sum = 1.0f / sum;
	for (x = 0; x < winSize; x++)
	{
		kern[x] *= sum;
		ikern[x] = kern[x] * 256.0f;
	}
	free(kern);
	return ikern;
}

void GaussBlur(unsigned char*  pixels, unsigned int    width, unsigned int  height, unsigned  int channels, int sigma)
{
	width = 3 * width;
	if ((width % 4) != 0) width += (4 - (width % 4));

	unsigned int  winsize = (1 + (((int)ceil(3 * sigma)) * 2));
	int *gaussKern = buildGaussKern(winsize, sigma);
	winsize *= 3;
	unsigned int  halfsize = winsize / 2;
	  
	unsigned char *tmpBuffer = (unsigned char*)malloc(width * height* sizeof(unsigned char));

	for (unsigned int h = 0; h < height; h++)
	{
		unsigned int  rowWidth = h * width;

		for (unsigned int w = 0; w < width; w += channels)
		{
			unsigned int rowR = 0;
			unsigned int rowG = 0;
			unsigned int rowB = 0;
			int * gaussKernPtr = gaussKern;
			int whalfsize = w + width - halfsize;
			unsigned int  curPos = rowWidth + w;
			for (unsigned int k = 1; k < winsize; k += channels)
			{
				unsigned int  pos = rowWidth + ((k + whalfsize) % width);
				int fkern = *gaussKernPtr++;
				rowR += (pixels[pos] * fkern);
				rowG += (pixels[pos + 1] * fkern);
				rowB += (pixels[pos + 2] * fkern);
			}

			tmpBuffer[curPos] = ((unsigned char)(rowR >> 8));
			tmpBuffer[curPos + 1] = ((unsigned char)(rowG >> 8));
			tmpBuffer[curPos + 2] = ((unsigned char)(rowB >> 8));

		}
	}
	winsize /= 3;
	halfsize = winsize / 2;
	for (unsigned int w = 0; w < width; w++)
	{
		for (unsigned int h = 0; h < height; h++)
		{
			unsigned    int col_all = 0;
			int hhalfsize = h + height - halfsize;
			for (unsigned int k = 0; k < winsize; k++)
			{
				col_all += tmpBuffer[((k + hhalfsize) % height)* width + w] * gaussKern[k];
			}
			pixels[h * width + w] = (unsigned char)(col_all >> 8);
		}
	}
	free(tmpBuffer);
	free(gaussKern); 
}

备注:

之于原始算法,我做了一些小改动,主要是为了考虑一点点性能上的问题。

有时会写太多注释反而显得啰嗦,所以将就着看哈。

这份代码,实测速度非常糟糕,处理一张5000x3000在半径大小5左右都要耗时十来秒至几十秒不等,实在难以接受。

由于速度的问题,网上就有不少优化算法的实现。

之前我也发过一篇《快速高斯模糊算法》,在同等条件下,这个算法已经比如上算法快上十几倍。

由于这份代码实在难以阅读学习,所以,我对其进行了进一步的调整和优化。

void GaussianBlur(unsigned char* img,  unsigned int width, unsigned int height, unsigned int channels, unsigned int radius)
{
	radius = min(max(1, radius), 248);
	unsigned int kernelSize = 1 + radius * 2;
	unsigned int* kernel = (unsigned int*)malloc(kernelSize* sizeof(unsigned int));
	memset(kernel, 0, kernelSize* sizeof(unsigned int));
	int(*mult)[256] = (int(*)[256])malloc(kernelSize * 256 * sizeof(int));
	memset(mult, 0, kernelSize * 256 * sizeof(int));
	 
	int	xStart = 0;
	int	yStart = 0;
	width = xStart + width - max(0, (xStart + width) - width);
	height = yStart + height - max(0, (yStart + height) - height);
	int imageSize = width*height;
	int widthstep = width*channels;
	if (channels == 3 || channels == 4)
	{
		unsigned char *    CacheImg = nullptr;
		CacheImg = (unsigned char *)malloc(sizeof(unsigned char) * imageSize * 6);
		if (CacheImg == nullptr) return;
		unsigned char *    rCache = CacheImg;
		unsigned char *    gCache = CacheImg + imageSize;
		unsigned char *    bCache = CacheImg + imageSize * 2;
		unsigned char *    r2Cache = CacheImg + imageSize * 3;
		unsigned char *    g2Cache = CacheImg + imageSize * 4;
		unsigned char *    b2Cache = CacheImg + imageSize * 5;
		int sum = 0;
		for (int K = 1; K < radius; K++){
			unsigned int szi = radius - K;
			kernel[radius + K] = kernel[szi] = szi*szi;
			sum += kernel[szi] + kernel[szi];
			for (int j = 0; j < 256; j++){
				mult[radius + K][j] = mult[szi][j] = kernel[szi] * j;
			}
		}
		kernel[radius] = radius*radius;
		sum += kernel[radius];
		for (int j = 0; j < 256; j++){
			mult[radius][j] = kernel[radius] * j;
		}
		for (int Y = 0; Y < height; ++Y) {
			unsigned char*     LinePS = img + Y*widthstep;
			unsigned char*     LinePR = rCache + Y*width;
			unsigned char*     LinePG = gCache + Y*width;
			unsigned char*     LinePB = bCache + Y*width;
			for (int X = 0; X < width; ++X) {
				int     p2 = X*channels;
				LinePR[X] = LinePS[p2];
				LinePG[X] = LinePS[p2 + 1];
				LinePB[X] = LinePS[p2 + 2];
			}
		}
		int kernelsum = 0;
		for (int K = 0; K < kernelSize; K++){
			kernelsum += kernel[K];
		}
		float fkernelsum = 1.0f / kernelsum;
		for (int Y = yStart; Y < height; Y++){
			int heightStep = Y * width;
			unsigned char*     LinePR = rCache + heightStep;
			unsigned char*     LinePG = gCache + heightStep;
			unsigned char*     LinePB = bCache + heightStep;
			for (int X = xStart; X < width; X++){
				int cb = 0;
				int cg = 0;
				int cr = 0;
				for (int K = 0; K < kernelSize; K++){
					unsigned    int     readPos = ((X - radius + K + width) % width);
					int * pmult = mult[K];
					cr += pmult[LinePR[readPos]];
					cg += pmult[LinePG[readPos]];
					cb += pmult[LinePB[readPos]];
				}
				unsigned int p = heightStep + X;
				r2Cache[p] = cr* fkernelsum;
				g2Cache[p] = cg* fkernelsum;
				b2Cache[p] = cb* fkernelsum;
			}
		}
		for (int X = xStart; X < width; X++){
			int WidthComp = X*channels;
			int WidthStep = width*channels;
			unsigned char*     LinePS = img + X*channels;
			unsigned char*     LinePR = r2Cache + X;
			unsigned char*     LinePG = g2Cache + X;
			unsigned char*     LinePB = b2Cache + X;
			for (int Y = yStart; Y < height; Y++){
				int cb = 0;
				int cg = 0;
				int cr = 0;
				for (int K = 0; K < kernelSize; K++){
					unsigned int   readPos = ((Y - radius + K + height) % height) * width;
					int * pmult = mult[K];
					cr += pmult[LinePR[readPos]];
					cg += pmult[LinePG[readPos]];
					cb += pmult[LinePB[readPos]];
				}
				int    p = Y*WidthStep;
				LinePS[p] = (unsigned char)(cr * fkernelsum);
				LinePS[p + 1] = (unsigned char)(cg * fkernelsum);
				LinePS[p + 2] = (unsigned char)(cb* fkernelsum);

				 
			}
		}
		free(CacheImg);
	}
	else if (channels == 1)
	{
		unsigned char *    CacheImg = nullptr;
		CacheImg = (unsigned char *)malloc(sizeof(unsigned char) * imageSize * 2);
		if (CacheImg == nullptr) return;
		unsigned char *    rCache = CacheImg;
		unsigned char *    r2Cache = CacheImg + imageSize;

		int sum = 0;
		for (int K = 1; K < radius; K++){
			unsigned int szi = radius - K;
			kernel[radius + K] = kernel[szi] = szi*szi;
			sum += kernel[szi] + kernel[szi];
			for (int j = 0; j < 256; j++){
				mult[radius + K][j] = mult[szi][j] = kernel[szi] * j;
			}
		}
		kernel[radius] = radius*radius;
		sum += kernel[radius];
		for (int j = 0; j < 256; j++){
			mult[radius][j] = kernel[radius] * j;
		}
		for (int Y = 0; Y < height; ++Y) {
			unsigned char*     LinePS = img + Y*widthstep;
			unsigned char*     LinePR = rCache + Y*width;
			for (int X = 0; X < width; ++X) {
				LinePR[X] = LinePS[X];
			}
		}
		int kernelsum = 0;
		for (int K = 0; K < kernelSize; K++){
			kernelsum += kernel[K];
		}
		float fkernelsum = 1.0f / kernelsum;
		for (int Y = yStart; Y < height; Y++){
			int heightStep = Y * width;
			unsigned char*     LinePR = rCache + heightStep;
			for (int X = xStart; X < width; X++){
				int cb = 0;
				int cg = 0;
				int cr = 0;
				for (int K = 0; K < kernelSize; K++){
					unsigned    int     readPos = ( (X - radius + K+width)%width);
					int * pmult = mult[K];
					cr += pmult[LinePR[readPos]];
				}
				unsigned int p = heightStep + X;
				r2Cache[p] = cr * fkernelsum;
			}
		}
		for (int X = xStart; X < width; X++){
			int WidthComp = X*channels;
			int WidthStep = width*channels;
			unsigned char*     LinePS = img + X*channels;
			unsigned char*     LinePR = r2Cache + X;
			for (int Y = yStart; Y < height; Y++){
				int cb = 0;
				int cg = 0;
				int cr = 0;
				for (int K = 0; K < kernelSize; K++){
					unsigned int   readPos = ((Y - radius + K+height)%height) * width;
					int * pmult = mult[K];
					cr += pmult[LinePR[readPos]];
				}
				int    p = Y*WidthStep;
				LinePS[p] = (unsigned char)(cr* fkernelsum);
			}
		}
		free(CacheImg);
	} 
	free(kernel);
	free(mult);
}

  其中有部分算法优化技巧,想来也能起到一点抛砖引玉的作用。

贴个效果图:

pytorch高斯模糊参数设置 高斯模糊优化_pytorch高斯模糊参数设置_02