1、生成数据集

class moon_data_class(object):
    def __init__(self,N,d,r,w):
        self.N=N
        self.w=w
      
        self.d=d
        self.r=r
    
   
    def sgn(self,x):
        if(x>0):
            return 1;
        else:
            return -1;
        
    def sig(self,x):
        return 1.0/(1+np.exp(x))
    
        
    def dbmoon(self):
        N1 = 10*self.N
        N = self.N
        r = self.r
        w2 = self.w/2
        d = self.d
        done = True
        data = np.empty(0)
        while done:
            #generate Rectangular data
            tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
            tmp_y = (r+w2)*np.random.random([N1, 1])
            tmp = np.concatenate((tmp_x, tmp_y), axis=1)
            tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
            #generate double moon data ---upper
            idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
            idx = (idx.nonzero())[0]
     
            if data.shape[0] == 0:
                data = tmp.take(idx, axis=0)
            else:
                data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
            if data.shape[0] >= N:
                done = False
        #print (data)
        db_moon = data[0:N, :]
        #print (db_moon)
        #generate double moon data ----down
        data_t = np.empty([N, 2])
        data_t[:, 0] = data[0:N, 0] + r
        data_t[:, 1] = -data[0:N, 1] - d
        db_moon = np.concatenate((db_moon, data_t), axis=0)
        return db_moon

2、SVM算法

class SVM:
    def __init__(self, dataSet, labels, C, toler, kernel_option):
        self.train_x = dataSet # 训练特征
        self.train_y = labels  # 训练标签
        self.C = C # 惩罚参数
        self.toler = toler     # 迭代的终止条件之一
        self.n_samples = np.shape(dataSet)[0] # 训练样本的个数
        self.alphas = np.mat(np.zeros((self.n_samples, 1))) # 拉格朗日乘子
        self.b = 0
        self.error_tmp = np.mat(np.zeros((self.n_samples, 2))) # 保存E的缓存
        self.kernel_opt = kernel_option # 选用的核函数及其参数
        self.kernel_mat = calc_kernel(self.train_x, self.kernel_opt) # 核函数的输出

def cal_kernel_value(train_x, train_x_i, kernel_option):
    '''样本之间的核函数的值
    input:  train_x(mat):训练样本
            train_x_i(mat):第i个训练样本
            kernel_option(tuple):核函数的类型以及参数
    output: kernel_value(mat):样本之间的核函数的值
            
    '''
    kernel_type = kernel_option[0] # 核函数的类型,分为rbf和其他
    m = np.shape(train_x)[0] # 样本的个数
    
    kernel_value = np.mat(np.zeros((m, 1)))
    
    if kernel_type == 'rbf': # rbf核函数
        sigma = kernel_option[1]
        if sigma == 0:
            sigma = 1.0
        for i in range(m):
            diff = train_x[i, :] - train_x_i
            kernel_value[i] = np.exp(diff * diff.T / (sigma))
    else: # 不使用核函数
        kernel_value = train_x * train_x_i.T
    return kernel_value


def calc_kernel(train_x, kernel_option):
    '''计算核函数矩阵
    input:  train_x(mat):训练样本的特征值
            kernel_option(tuple):核函数的类型以及参数
    output: kernel_matrix(mat):样本的核函数的值
    '''
    m = np.shape(train_x)[0] # 样本的个数
    kernel_matrix = np.mat(np.zeros((m, m))) # 初始化样本之间的核函数值
    for i in range(m):
        kernel_matrix[:, i] = cal_kernel_value(train_x, train_x[i, :], kernel_option)
    return kernel_matrix

def cal_error(svm, alpha_k):
    '''误差值的计算
    input:  svm:SVM模型
            alpha_k(int):选择出的变量
    output: error_k(float):误差值
    '''
    output_k = float(np.multiply(svm.alphas, svm.train_y).T * svm.kernel_mat[:, alpha_k] + svm.b)
    error_k = output_k - float(svm.train_y[alpha_k])
    return error_k


def update_error_tmp(svm, alpha_k):
    '''重新计算误差值
    input:  svm:SVM模型
            alpha_k(int):选择出的变量
    output: 对应误差值
    '''
    error = cal_error(svm, alpha_k)
    svm.error_tmp[alpha_k] = [1, error]

def select_second_sample_j(svm, alpha_i, error_i):
    '''选择第二个样本
    input:  svm:SVM模型
            alpha_i(int):选择出的第一个变量
            error_i(float):E_i
    output: alpha_j(int):选择出的第二个变量
            error_j(float):E_j
    '''
    # 标记为已被优化
    svm.error_tmp[alpha_i] = [1, error_i]
    candidateAlphaList = np.nonzero(svm.error_tmp[:, 0].A)[0]
    
    maxStep = 0
    alpha_j = 0
    error_j = 0

    if len(candidateAlphaList) > 1:
        for alpha_k in candidateAlphaList:
            if alpha_k == alpha_i: 
                continue
            error_k = cal_error(svm, alpha_k)
            if abs(error_k - error_i) > maxStep:
                maxStep = abs(error_k - error_i)
                alpha_j = alpha_k
                error_j = error_k
    else: # 随机选择          
        alpha_j = alpha_i
        while alpha_j == alpha_i:
            alpha_j = int(np.random.uniform(0, svm.n_samples))
        error_j = cal_error(svm, alpha_j)
    
    return alpha_j, error_j

def choose_and_update(svm, alpha_i):
    '''判断和选择两个alpha进行更新
    input:  svm:SVM模型
            alpha_i(int):选择出的第一个变量
    '''
    error_i = cal_error(svm, alpha_i) # 计算第一个样本的E_i
    
    # 判断选择出的第一个变量是否违反了KKT条件
    if (svm.train_y[alpha_i] * error_i < -svm.toler) and (svm.alphas[alpha_i] < svm.C) or\
        (svm.train_y[alpha_i] * error_i > svm.toler) and (svm.alphas[alpha_i] > 0):

        # 1、选择第二个变量
        alpha_j, error_j = select_second_sample_j(svm, alpha_i, error_i)
        alpha_i_old = svm.alphas[alpha_i].copy()
        alpha_j_old = svm.alphas[alpha_j].copy()

        # 2、计算上下界
        if svm.train_y[alpha_i] != svm.train_y[alpha_j]:
            L = max(0, svm.alphas[alpha_j] - svm.alphas[alpha_i])
            H = min(svm.C, svm.C + svm.alphas[alpha_j] - svm.alphas[alpha_i])
        else:
            L = max(0, svm.alphas[alpha_j] + svm.alphas[alpha_i] - svm.C)
            H = min(svm.C, svm.alphas[alpha_j] + svm.alphas[alpha_i])
        if L == H:
            return 0

        # 3、计算eta
        eta = 2.0 * svm.kernel_mat[alpha_i, alpha_j] - svm.kernel_mat[alpha_i, alpha_i] \
                  - svm.kernel_mat[alpha_j, alpha_j]
        if eta >= 0:
            return 0

        # 4、更新alpha_j
        svm.alphas[alpha_j] -= svm.train_y[alpha_j] * (error_i - error_j) / eta

        # 5、确定最终的alpha_j
        if svm.alphas[alpha_j] > H:
            svm.alphas[alpha_j] = H
        if svm.alphas[alpha_j] < L:
            svm.alphas[alpha_j] = L

        # 6、判断是否结束      
        if abs(alpha_j_old - svm.alphas[alpha_j]) < 0.00001:
            update_error_tmp(svm, alpha_j)
            return 0

        # 7、更新alpha_i
        svm.alphas[alpha_i] += svm.train_y[alpha_i] * svm.train_y[alpha_j] \
                                * (alpha_j_old - svm.alphas[alpha_j])

        # 8、更新b
        b1 = svm.b - error_i - svm.train_y[alpha_i] * (svm.alphas[alpha_i] - alpha_i_old) \
                                                    * svm.kernel_mat[alpha_i, alpha_i] \
                             - svm.train_y[alpha_j] * (svm.alphas[alpha_j] - alpha_j_old) \
                                                    * svm.kernel_mat[alpha_i, alpha_j]
        b2 = svm.b - error_j - svm.train_y[alpha_i] * (svm.alphas[alpha_i] - alpha_i_old) \
                                                    * svm.kernel_mat[alpha_i, alpha_j] \
                             - svm.train_y[alpha_j] * (svm.alphas[alpha_j] - alpha_j_old) \
                                                    * svm.kernel_mat[alpha_j, alpha_j]
        if (0 < svm.alphas[alpha_i]) and (svm.alphas[alpha_i] < svm.C):
            svm.b = b1
        elif (0 < svm.alphas[alpha_j]) and (svm.alphas[alpha_j] < svm.C):
            svm.b = b2
        else:
            svm.b = (b1 + b2) / 2.0

        # 9、更新error
        update_error_tmp(svm, alpha_j)
        update_error_tmp(svm, alpha_i)

        return 1
    else:
        return 0

def SVM_training(train_x, train_y, C, toler, max_iter, kernel_option = ('rbf', 0.431029)):
    '''SVM的训练
    input:  train_x(mat):训练数据的特征
            train_y(mat):训练数据的标签
            C(float):惩罚系数
            toler(float):迭代的终止条件之一
            max_iter(int):最大迭代次数
            kerner_option(tuple):核函数的类型及其参数
    output: svm模型
    '''
    # 1、初始化SVM分类器
    svm = SVM(train_x, train_y, C, toler, kernel_option)
    
    # 2、开始训练
    entireSet = True
    alpha_pairs_changed = 0
    iteration = 0
    
    while (iteration < max_iter) and ((alpha_pairs_changed > 0) or entireSet):
        print("\t iterration: ", iteration)
        alpha_pairs_changed = 0

        if entireSet:
            # 对所有的样本
            for x in range(svm.n_samples):
                alpha_pairs_changed += choose_and_update(svm, x)
            iteration += 1
        else:
            # 非边界样本
            bound_samples = []
            for i in range(svm.n_samples):
                if svm.alphas[i,0] > 0 and svm.alphas[i,0] < svm.C:
                    bound_samples.append(i)
            for x in bound_samples:
                alpha_pairs_changed += choose_and_update(svm, x)
            iteration += 1
        
        # 在所有样本和非边界样本之间交替
        if entireSet:
            entireSet = False
        elif alpha_pairs_changed == 0:
            entireSet = True

    return svm

def svm_predict(svm, test_sample_x):
    '''利用SVM模型对每一个样本进行预测
    input:  svm:SVM模型
            test_sample_x(mat):样本
    output: predict(float):对样本的预测
    '''
    # 1、计算核函数矩阵
    kernel_value = cal_kernel_value(svm.train_x, test_sample_x, svm.kernel_opt)
    # 2、计算预测值
    
    predict = kernel_value.T * np.multiply(svm.train_y, svm.alphas) #+ svm.b
    return predict

def cal_accuracy(svm, test_x, test_y):
    '''计算预测的准确性
    input:  svm:SVM模型
            test_x(mat):测试的特征
            test_y(mat):测试的标签
    output: accuracy(float):预测的准确性
    '''
    n_samples = np.shape(test_x)[0] # 样本的个数
    correct = 0.0
    for i in range(n_samples):
        # 对每一个样本得到预测值
        predict=svm_predict(svm, test_x[i, :])
        # 判断每一个样本的预测值与真实值是否一致
        if np.sign(predict) == np.sign(test_y[i]):
            correct += 1
    accuracy = correct / n_samples
    return accuracy

3、运行测试

if __name__ == "__main__":
    # 1、导入训练数据
   
    #dataSet, labels = load_data_libsvm("heart_scale")
    step=0
    color=['.r','.g','.b','.y']#颜色种类
    dcolor=['*r','*g','*b','*y']#颜色种类
    frames = []
    
    N = 400
    d = -5
    r = 10
    width = 6
        
    data_source = moon_data_class(N, d, r, width)
    data = data_source.dbmoon()
     # x0 = [1 for x in range(1,401)]
    input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
        
    labels_pre = [[-1.] for y in range(1, 401)]
    labels_pos = [[1. ] for y in range(1, 401)]
    label=labels_pre+labels_pos
    dataSet = np.mat(input_cells)
    labels = np.mat(label)
   
    # 2、训练SVM模型
    C = 0.001
    toler = 0.1
    maxIter = 1000
    kernel_option = ('rbf', -10)
    svm_model = SVM_training(dataSet, labels, C, toler, maxIter,kernel_option)
    # 3、计算训练的准确性
    accuracy = cal_accuracy(svm_model, dataSet, labels)  
    print("The training accuracy is: %.3f%%" % (accuracy * 100))
    # 4、保存最终的SVM模型
    print("------------ 4、save model ----------------")
    #svm.save_svm_model(svm_model, "model_file")
    test_x = []
    test_y = []
    test_p = []
    predict = 0
    
    y_p_old = 0                
    for x in np.arange(-15.,25.,1):
        for y in np.arange(-15.,25.,1):
            predict = svm_predict(svm_model, np.array([x, y]))
            #print(predict)
            y_p = np.sign(predict)[0, 0]
            #y_p =get_prediction(np.array([x, y]),svm_model)
            #y_p =float(y_p)
            if(y_p_old > 0 and y_p < 0):
                test_x.append(x)
                test_y.append(y)
                test_p.append([y_p_old,y_p])
            y_p_old = y_p
    #画决策边界
    plt.plot( test_x, test_y, 'g--')    
    plt.plot(data[0:N, 0], data[0:N, 1], 'r*', data[N:2*N, 0], data[N:2*N, 1], 'b*')
    plt.show()

4、运行结果

支持向量机数据集在哪里找_支持向量机数据集在哪里找


5、利用tensorflow实现

# -*- coding: utf-8 -*-
"""
Created on Fri Nov  9 22:00:44 2018

@author: ASUS
"""

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
class moon_data_class(object):
    def __init__(self,N,d,r,w):
        self.N=N
        self.w=w
      
        self.d=d
        self.r=r
    
   
    def sgn(self,x):
        if(x>0):
            return 1;
        else:
            return -1;
        
    def sig(self,x):
        return 1.0/(1+np.exp(x))
    
        
    def dbmoon(self):
        N1 = 10*self.N
        N = self.N
        r = self.r
        w2 = self.w/2
        d = self.d
        done = True
        data = np.empty(0)
        while done:
            #generate Rectangular data
            tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
            tmp_y = (r+w2)*np.random.random([N1, 1])
            tmp = np.concatenate((tmp_x, tmp_y), axis=1)
            tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
            #generate double moon data ---upper
            idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
            idx = (idx.nonzero())[0]
     
            if data.shape[0] == 0:
                data = tmp.take(idx, axis=0)
            else:
                data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
            if data.shape[0] >= N:
                done = False
        #print (data)
        db_moon = data[0:N, :]
        #print (db_moon)
        #generate double moon data ----down
        data_t = np.empty([N, 2])
        data_t[:, 0] = data[0:N, 0] + r
        data_t[:, 1] = -data[0:N, 1] - d
        db_moon = np.concatenate((db_moon, data_t), axis=0)
        return db_moon

sess = tf.Session()
(x_vals, y_vals) = datasets.make_circles(n_samples=500, factor=.5,noise=.1)
y_vals = np.array([1 if y==1 else -1 for y in y_vals])

N = 200
d = -4
r = 10
width = 6
        
data_source = moon_data_class(N, d, r, width)
data = data_source.dbmoon()
     # x0 = [1 for x in range(1,401)]
x_vals = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
        
labels_pre = [-1 for y in range(1, 201)]
labels_pos = [1  for y in range(1, 201)]
y_vals = np.array(labels_pre+labels_pos)

class1_x = data[0:N, 0]
class1_y = data[0:N, 1]
class2_x = data[N:2*N, 0]
class2_y = data[N:2*N, 1]

batch_size = 250
x_data = tf.placeholder(shape = [None,2],dtype = tf.float32)
y_target = tf.placeholder(shape = [None,1],dtype = tf.float32)
prediction_grid = tf.placeholder(shape = [None, 2],dtype = tf.float32)
b = tf.Variable(tf.random_normal(shape = [1, batch_size]))

gamma = tf.constant(-0.05)
dist = tf.reduce_sum(tf.square(x_data),1)
dist = tf.reshape(dist,[-1,1])
sq_dists = tf.add(tf.subtract(dist, tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))),tf.transpose(dist))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

model_output = tf.matmul(b,my_kernel)
first_term= tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b),b)
y_target_cross = tf.matmul(y_target,tf.transpose(y_target))

second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross,y_target_cross)))

loss = tf.negative(tf.subtract(first_term, second_term))

rA = tf.reshape(tf.reduce_sum(tf.square(x_data),1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid),1),[-1,1])

pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))),tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))


my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init)
loss_vec = []

batch_accuracy = []

for i in range(5000):
    rand_index = np.random.choice(len(x_vals),size=batch_size)
    rand_x = x_vals[rand_index]
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data:rand_x, y_target:rand_y})
    temp_loss = sess.run(loss, feed_dict={x_data:rand_x, y_target:rand_y})
    loss_vec.append(temp_loss)
    
    acc_temp = sess.run(accuracy,feed_dict ={x_data:rand_x, y_target:rand_y,prediction_grid:rand_x})
    batch_accuracy.append(acc_temp)
    if (i+1)%100==0:
        print('Step # ' + str(i+1))
        print('Loss = ' + str(temp_loss))

x_min, x_max = x_vals[:,0].min() - 1, x_vals[:,0].max() +1
y_min, y_max = x_vals[:,1].min() - 1, x_vals[:,1].max() +1

xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))

grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction,feed_dict ={x_data:rand_x, y_target:rand_y,prediction_grid:grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

plt.contourf(xx,yy,grid_predictions, cmap=plt.cm.Paired,alpha=0.8)
plt.plot(class1_x,class1_y, 'ro',label='I. setosa')
plt.plot(class2_x,class2_y, 'rx',label='Non setosa')
plt.legend(loc='lower right')
plt.ylim([-15,15])
plt.xlim([-15,25])
plt.show()

6、运行结果

支持向量机数据集在哪里找_支持向量机数据集在哪里找_02