首先看张核心的resnet层次结构图(图1),它诠释了resnet18-152是如何搭建的,其中resnet18和resnet34结构类似,而resnet50-resnet152结构类似。下面先看resnet18的源码

pytorch resnet进行推理 pytorch调用resnet_卷积


图1


resnet18
首先是models.resnet18函数的调用

def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    #[2, 2, 2, 2]和结构图[]X2是对应的
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained: #加载模型权重
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model
  • 这里涉及到了一个BasicBlock类(resnet18和34),这样的一个结构我们称为一个block,因为在block内部的conv都使用了padding,输入的in_img_size和out_img_size都是56x56,在图2右边的shortcut只需要改变输入的channel的大小,输入bloack的输入tensor和输出tensor就可以相加(详细内容)

    图2

事实上图2是Bottleneck类(用于resnet50-152,稍后分析),其和BasicBlock差不多,图3为图2的精简版(ps:可以把下图视为为一个box_block,即多个block叠加在一起,x3说明有3个上图一样的结构串起来):

  • 图3

BasicBlock类,可以对比结构图中的resnet18和resnet34,类中expansion =1,其表示box_block中最后一个block的channel比上第一个block的channel,即:

def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)

class BasicBlock(nn.Module):
    expansion = 1
    #inplanes其实就是channel,叫法不同
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        #把shortcut那的channel的维度统一
        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)


class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        #downsample 主要用来处理H(x)=F(x)+x中F(x)和xchannel维度不匹配问题
        downsample = None
        #self.inplanes为上个box_block的输出channel,planes为当前box_block块的输入channel
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)




def resnet152(pretrained=False, **kwargs):
    """Constructs a ResNet-152 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))



class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

   


RuntimeError: size mismatch, m1: [1 x 8192], m2: [2048 x 1000] at c:\miniconda2\conda-bld\pytorch-cpu_1519449358620\work\torch\lib\th\generic/THTensorMath.c:1434
  • 1
  • 1

首先我们看下,resnet在哪些地方改变了输出图像的大小

pytorch resnet进行推理 pytorch调用resnet_ide_02

conv和pool层的输出大小都可以根据下面公式计算得出

但是resnet里面的卷积层太多了,就resnet152的height而言,其最后avgpool后的大小为,因此修改源码把图像的height和width传递进去,从而兼容非224的图片大小:

self.avgpool = nn.AvgPool2d(7, stride=1)
f = lambda x:math.ceil(x /32 - 7 + 1)
self.fc = nn.Linear(512 * block.expansion * f(w) * f(h), num_classes) #block.expansion=4
  • 也可以在外面替换跳最后一个fc层,这里的2048即本文图1中resnet152对应的最后layer的输出channel,若是resnet18或resnet34则为512
model_ft = models.resnet152(pretrained=True)
f = lambda x:math.ceil(x /32 - 7 + 1)
model_ft.fc = nn.Linear(f(target_w) * f(target_h) * 2048, nb_classes)
  • 还有另外一种暴力的方法,就是不管卷积层的输出大小,取其平均值做为输出,比如:
self.main = torchvision.models.resnet152(pretrained)
self.main.avgpool = nn.AdaptiveAvgPool2d((1, 1))