你想找到x,使得两个高斯函数具有相同的高度.(即相交)

您可以通过将两个高斯函数相等并求解x来实现.最后,您将得到一个二次方程,其系数与高斯均值和方差有关.这是最终结果:

import numpy as np
def solve(m1,m2,std1,std2):
a = 1/(2*std1**2) - 1/(2*std2**2)
b = m2/(std2**2) - m1/(std1**2)
c = m1**2 /(2*std1**2) - m2**2 / (2*std2**2) - np.log(std2/std1)
return np.roots([a,b,c])
m1 = 2.5
std1 = 1.0
m2 = 5.0
std2 = 1.0
result = solve(m1,m2,std1,std2)
输出是:
array([ 3.75])

您可以绘制找到的交叉点:

x = np.linspace(-5,9,10000)
plot1=plt.plot(x,mlab.normpdf(x,m1,std1))
plot2=plt.plot(x,mlab.normpdf(x,m2,std2))
plot3=plt.plot(result,mlab.normpdf(result,m1,std1),'o')

情节将是:

如果您的高斯人有多个交叉点,代码也会找到所有这些交叉点(比如m1 = 2.5,std1 = 3.0,m2 = 5.0,std2 = 1.0):