NLP实践——基于SIFRank的中文关键短语抽取
- 0. 本文介绍
- 1. 运行环境
- 2. 项目目录
- 3. 代码实现
- 3.1 utils
- 3.2 初始化各类组件
- 3.2.1 标点和停用词
- 3.2.2 预训练词汇权重
- 3.2.3 分词/词性标注模型
- 3.2.4 候选短语抽取模型
- 3.2.5 词形还原模型
- 3.2.6 编码模型
- 3.3 建立关键短语抽取模型
- 3.4 抽取应用
- 4. 改进
- 4.1 增加候选关键短语
- 4.2 自监督训练
0. 本文介绍
本文在《SIFRank: A New Baseline for Unsupervised Keyphrase Extraction Based on Pre-Trained Language Model》的基础上,借鉴原作者的思想,重写实现了一个好用的中文关键短语抽取工具。
首先声明一下,这篇论文我并没有看过,所有的理解全都是基于作者开源出来的代码,因而不保证所有的思想都与原作者保持一致。
这篇论文是一个抽取式的关键短语模型,相比近两年备受关注的生成式关键短语模型,其技术理念已经相对落后,但是在实际应用的生产环境中,尤其是对于无监督的垂直领域,我们更关心的是模型的可解释性以及抽取结果的可控性,因而抽取式的模型相比生成式,能够更加让我感到安心,这也是选择这篇论文作为参考的主要原因。在尝试这个思路之前,也对textrank,yake,autophrasex,UCphrase等关键短语抽取工具进行了尝试,但是效果都不太理想。
下面贴出原项目的地址:
https://github.com/yukuotc/SIFRank_zh
原项目的时间比较久,其中所应用到的elmo编码器的预训练模型的下载地址已经失效,并且词性标注模型也比较旧了,所以在此项目的基础上,我从中借鉴了一部分代码,并参考作者的思路,提出并实现了自己的解决方法,主要做出的修改如下:
熟悉我写作风格的同学们应该比较了解,我很少进行理论介绍,我的博客主要从易用的角度,关注一个具体功能的实现,接下来我将从运行环境开始讲起,介绍如何实现这一关键短语抽取模型。
1. 运行环境
首先介绍一下环境配置,我的运行环境如下:
torch 1.8.1
ltp 4.1.4
thulac 0.2.1
nltk 3.5
transformers 4.9.2
sentence-transformers 2.0.0
其中,
- thulac是参考原作者的环境,如果完全按照我的方法去做,不考虑原作者的方法,可以不安装;
- sentence-transformers是用于自监督训练,如果对领域迁移不感兴趣,可以不安装;
- transformers高版本是sentence-transformers的要求,如果不安装后者,估计前者4.0以上即可;
- ltp最好采用4.1或以上版本,其新版与旧版在效率和准确度上都有很大的差异;
- torch满足相应版本的ltp和transformers即可;
- nltk的版本相对随意,一般也不会与其他模块冲突。
2. 项目目录
然后介绍一下项目目录。建立一个项目根目录keyphrase_extractor,在此目录下建立一个jupyter笔记或py文件,建立一个utils.py(其中的内容后边会介绍),以及一个文件夹resources;
resources中,建立一个ner_usr_dict.txt,其中存放分词时的用户自定义实体表,每行写一个实体,例如:
南京市长
江大桥
这个文件的作用是,让分词模型在分词的时候,把“南京市长江大桥”分为[“南京市长”, “江大桥”],而非[“南京市”, “长江大桥”]。
然后去原项目中,下载auxiliary_data下的dict.txt,放在我们的resources下,命名为pretrained_weight_dict.txt。
全部准备好之后,整个项目目录应该是这个样子:
keyphrase_extractor
|--keyphrase_extract.ipynb # 下面所有的代码放进这个笔记
|--utils.py # 辅助函数
|--resources
|--ner_usr_dict.txt # 自定义实体表
|--pretrained_weight_dict.txt # 预训练词汇权重
|--chinese-electra-180g-small-discriminator # electra 预训练模型
|--config.json
|--tokenizer_config.json
|--tokenizer.json
|--added_tokens.json
|--special_tokens_map.json
|--vocab.txt
|--pytorch_model.bin
3. 代码实现
终于来到了喜闻乐见的代码环节,在这一环节中的所有代码,除了3.1中,全部依次丢进keyphrase_extract.ipynb中运行即可。
代码的基本逻辑我随手花了一个图,同学们凑合着看。
3.1 utils
首先完善一下我们的辅助类函数,打开utils.py,加入以下三个函数:
- get_word_weight:用于获取词权重
- process_long_input:用于将bert支持的长度从512扩展为1024
- rematch:用于token-level到char-level的匹配
这三个函数是到处借鉴来的,其中1是本项目中改写的,2是此论文所述项目中搬来的,3是从bert4keras中搬来的。
import numpy as np
import unicodedata, re
import torch
import torch.nn.functional as F
def get_word_weight(weightfile="", weightpara=2.7e-4):
"""
Get the weight of words by word_fre/sum_fre_words
:param weightfile
:param weightpara
:return: word2weight[word]=weight : a dict of word weight
"""
if weightpara <= 0: # when the parameter makes no sense, use unweighted
weightpara = 1.0
word2weight = {}
word2fre = {}
with open(weightfile, encoding='UTF-8') as f:
lines = f.readlines()
# sum_num_words = 0
sum_fre_words = 0
for line in lines:
word_fre = line.split()
# sum_num_words += 1
if (len(word_fre) >= 2):
word2fre[word_fre[0]] = float(word_fre[1])
sum_fre_words += float(word_fre[1])
else:
print(line)
for key, value in word2fre.items():
word2weight[key] = weightpara / (weightpara + value / sum_fre_words)
# word2weight[key] = 1.0 #method of RVA
return word2weight
def process_long_input(model, input_ids, attention_mask, start_tokens, end_tokens):
"""
Parameters
----------
model: 编码模型
input_ids: (b, l)
attention_mask: (b, l)
start_tokens: 对bert而言就是[101]
end_tokens: [102]
Returns
-------
"""
# Split the input to 2 overlapping chunks. Now BERT can encode inputs of which the length are up to 1024.
n, c = input_ids.size()
start_tokens = torch.tensor(start_tokens).to(input_ids) # 转化为tensor放在指定卡上
end_tokens = torch.tensor(end_tokens).to(input_ids)
len_start = start_tokens.size(0) # 1
len_end = end_tokens.size(0) # 1 if bert , 2 if roberta
if c <= 512:
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=True,
)
sequence_output = output[0]
attention = output[-1][-1]
else:
new_input_ids, new_attention_mask, num_seg = [], [], [] # num_seg记录原来的样本被切成多少片,1 or 2
seq_len = attention_mask.sum(1).cpu().numpy().astype(np.int32).tolist() # 在len维度上求和,即每个样本的1的个数,即长度
for i, l_i in enumerate(seq_len):
# 对batch中的每一个样本循环
if l_i <= 512:
# 如果长度小于512,就直接添加
new_input_ids.append(input_ids[i, :512])
new_attention_mask.append(attention_mask[i, :512])
num_seg.append(1)
else:
# 超过512的样本
# 第一段取开始到511,加结束符
input_ids1 = torch.cat([input_ids[i, :512 - len_end], end_tokens], dim=-1)
# 第二段取开始符,加剩下的部分
input_ids2 = torch.cat([start_tokens, input_ids[i, (l_i - 512 + len_start): l_i]], dim=-1)
# attention_mask同理
attention_mask1 = attention_mask[i, :512]
attention_mask2 = attention_mask[i, (l_i - 512): l_i]
new_input_ids.extend([input_ids1, input_ids2])
new_attention_mask.extend([attention_mask1, attention_mask2])
num_seg.append(2)
# 在batch维度上拼接
# 原本的input_ids 是(b, l),经过上面的for循环new_input_ids每一项是(l,)
# 然后在dim=0上stack,变回了(b, l)
# 但是此时的b可能已经大于原来的batch_size
input_ids = torch.stack(new_input_ids, dim=0)
attention_mask = torch.stack(new_attention_mask, dim=0)
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=True,
)
# 把新构建的输入进行建模,然后把建模结果拼回原来的
sequence_output = output[0] # (b, l, 768)
attention = output[-1][-1] # (b, ?, l, l)
i = 0 # i是旧的batch号
new_output, new_attention = [], []
for (n_s, l_i) in zip(num_seg, seq_len):
if n_s == 1:
# 这个pad没看懂。n_s == 1的话,c - 512应该小于0
output = F.pad(sequence_output[i], (0, 0, 0, c - 512))
att = F.pad(attention[i], (0, c - 512, 0, c - 512))
new_output.append(output)
new_attention.append(att)
elif n_s == 2:
# 取第一个片段的建模结果
output1 = sequence_output[i][:512 - len_end]
mask1 = attention_mask[i][:512 - len_end]
att1 = attention[i][:, :512 - len_end, :512 - len_end] # 构建第一个样本的时候增加了结束符,所以要去掉它
output1 = F.pad(output1, (0, 0, 0, c - 512 + len_end))
mask1 = F.pad(mask1, (0, c - 512 + len_end))
att1 = F.pad(att1, (0, c - 512 + len_end, 0, c - 512 + len_end))
# 第二个片段的建模结果
output2 = sequence_output[i + 1][len_start:]
mask2 = attention_mask[i + 1][len_start:]
att2 = attention[i + 1][:, len_start:, len_start:] # 构建第二个样本的时候增加了开始符,所以要从1开始索引,去掉它
output2 = F.pad(output2, (0, 0, l_i - 512 + len_start, c - l_i))
mask2 = F.pad(mask2, (l_i - 512 + len_start, c - l_i))
att2 = F.pad(att2, [l_i - 512 + len_start, c - l_i, l_i - 512 + len_start, c - l_i])
# 把两个片段合并
mask = mask1 + mask2 + 1e-10
output = (output1 + output2) / mask.unsqueeze(-1)
att = (att1 + att2)
att = att / (att.sum(-1, keepdim=True) + 1e-10)
new_output.append(output)
new_attention.append(att)
i += n_s
sequence_output = torch.stack(new_output, dim=0)
attention = torch.stack(new_attention, dim=0)
return sequence_output, attention
def rematch(text, tokens, do_lower_case=True):
if do_lower_case:
text = text.lower()
def is_control(ch):
return unicodedata.category(ch) in ('Cc', 'Cf')
def is_special(ch):
return bool(ch) and (ch[0] == '[') and (ch[-1] == ']')
def stem(token):
if token[:2] == '##':
return token[2:]
else:
return token
normalized_text, char_mapping = '', []
for i, ch in enumerate(text):
if do_lower_case:
ch = unicodedata.normalize('NFD', ch)
ch = ''.join([c for c in ch if unicodedata.category(c) != 'mn'])
ch = ''.join([c for c in ch if not (ord(c) == 0 or ord(c) == 0xfffd or is_control(c))])
normalized_text += ch
char_mapping.extend([i] * len(ch))
text, token_mapping, offset = normalized_text, [], 0
for token in tokens:
if token.startswith('▁'):
token = token[1:]
if is_special(token):
token_mapping.append([])
else:
token = stem(token)
if do_lower_case:
token = token.lower()
try:
start = text[offset:].index(token) + offset
except Exception as e:
print(e)
print(token)
end = start + len(token)
token_mapping.append(char_mapping[start: end])
offset = end
return token_mapping
3.2 初始化各类组件
先import:
import time
import numpy as np
import thulac
import nltk
from nltk.corpus import stopwords
from ltp import LTP
import torch
import torch.nn.functional as F
from transformers import ElectraModel, ElectraTokenizerFast
from sentence_transformers.util import pytorch_cos_sim
from utils import get_word_weight, process_long_input, rematch
3.2.1 标点和停用词
english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
chinese_punctuations = '!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.'
punctuations = ''.join(i for i in english_punctuations) + chinese_punctuations
# 注意只对英文去停,中文停用词保留
stop_words = stopwords.words('english')
3.2.2 预训练词汇权重
weightfile_pretrain = './resources/pretrained_weight_dict.txt'
weightpara_pretrain = 2.7e-4
word2weight_pretrain = get_word_weight(weightfile_pretrain, weightpara_pretrain)
3.2.3 分词/词性标注模型
如果采用SIFRank原作者的策略,则实例化一个lac模型
lac_model = thulac.thulac()
我采用的是ltp模型,首先把自定义词表和模型路径加载一下。
ltp_model_path = '/ltp4_data/base/' # 这个模型需要去ltp的git上下载
ltp_ner_usr_dict_path = './resources/ner_usr_dict.txt'
usr_dict = []
with open(ltp_ner_usr_dict_path) as f:
for line in f.readlines():
usr_dict.append(line.split('\n')[0])
然后构建一个类,用于做分词和词性分析。
class LTPForTokenizeAndPostag:
"""
用于分词和词性分析
---------------
ver: 2021-11-01
by: changhongyu
"""
def __init__(self, ltp_model_path, ners=None, device='cpu'):
"""
:param ltp_model_path: str: ltp模型的路径
:param ners: list: 用户输入的实体列表
:param device: str: cpu还是cuda
"""
print('Initializing LTP model from {}.'.format(ltp_model_path))
self.ltp_model = LTP(path=ltp_model_path, device=device)
print('LTP model created.')
if ners:
self.ltp_model.add_words(words=ners, max_window=4)
# 为了保持与thu-lac模型的词性标记形式一致,做了这个映射
# 当然,也可以不映射,然后对3.2.4的抽取器进行适当修改
self.ltp_to_lac_pos_map = {
'b': 'a',
'nd': 'f',
'nh': 'np',
'nl': 'ns',
'nt': 't',
'wp': 'w',
'ws': 'x',
}
def _get_tokens(self, text):
tokens, hidden = self.ltp_model.seg(self.ltp_model.sent_split([text]))
self.hidden = hidden
para_tokens = []
for t in tokens:
para_tokens += t
return para_tokens
def _get_pos(self, text):
tags = self.ltp_model.pos(self.hiden)
para_tags = []
for t in tags:
para_tags += t
return para_tags
# 因为lac模型的调用方法是cut,所以保持一致用cut命名
def cut(self, text):
"""
:param text: str: 输入文本
:return token_list: list: tokenized
:return token_tag_list: list: token对应的词性
"""
token_list = self._get_tokens(text)
token_tag_list = self._get_pos(text)
assert len(token_list) == len(token_tag_list)
token_tag_list_lac = []
for tag in token_tag_list:
if tag in self.ltp_to_lac_pos_map:
token_tag_list_lac.append(self.ltp_to_lac_pos_map[tag])
else:
token_tag_list_lac.append(tag)
return [[token, tag] for token, tag in zip(token_list, token_tag_list_lac)]
然后实例化这个模型,替换原来的lac模型:
ltp_pos_model = LTPForTokenizeAndPostag(ltp_model_path, ners=usr_dict, device='cuda:0')
3.2.4 候选短语抽取模型
这个模型的作用是以nltk的正则工具抽取候选关键短语。我在原项目的基础上做了一点点修改,原项目每次抽取都重新实例化抽取器,让我觉得很别扭。
class CandidateExtractor:
"""
参考SIFRank项目的词性正则抽取候选短语
"""
def __init__(self):
grammar = """ NP:
{<n.*|a|uw|i|j|x>*<n.*|uw|x>|<x|j><-><m|q>} # Adjective(s)(optional) + Noun(s)"""
self.parser = nltk.RegexpParser(grammar)
def extract_candidates(self, tokens_tagged):
keyphrase_candidate = []
np_pos_tag_tokens = self.parser.parse(tokens_tagged)
count = 0
for token in np_pos_tag_tokens:
if (isinstance(token, nltk.tree.Tree) and token._label == "NP"):
np = ''.join(word for word, tag in token.leaves())
length = len(token.leaves())
start_end = (count, count + length)
count += length
keyphrase_candidate.append((np, start_end))
else:
count += 1
return keyphrase_candidate
candidate_extractor = CandidateExtractor()
3.2.5 词形还原模型
这个没什么好说的,就是一个简单的词形还原,对中文来说作用不大。
lemma_model = nltk.WordNetLemmatizer()
3.2.6 编码模型
这里可以采用多种编码模型,可以多实验几个预训练模型测试一下效果。注意,Roberta系列的模型和XMLRoberta系列的模型由于tokenizer比较特殊,我没有做相应的适配。
Electra模型:
electra_path = './resources/chinese-electra-180g-small-discriminator'
electra_tokenizer = ElectraTokenizerFast.from_pretrained(electra_path)
electra_model = ElectraModel.from_pretrained(electra_path)
Bert模型:
from transformers import BertTokenizerFast, BertModel
bert_path = './resources/bert-base-chinese/'
bert_model = BertModel.from_pretrained(bert_path)
bert_tokenizer = BertTokenizerFast.from_pretrained(bert_path)
Sentence-bert提供的一个语义相似度预训练bert:
from transformers import DistilBertTokenizerFast, DistilBertModel
# distil_bert_path = './resources/distiluse-base-multilingual-cased-v2/' # 这个是原来的
distil_bert_path = './finetune_embedding_model/SimCSE/4500/' # 这个是我用SimCSE训练之后的
distil_bert_model = DistilBertModel.from_pretrained(distil_bert_path)
distil_bert_tokenizer = DistilBertTokenizerFast.from_pretrained(distil_bert_path)
这些模型都可以在huggingface网站上找到,参考本文第2部分。
3.3 建立关键短语抽取模型
万事俱备,接下来就把这些组件放在一起,构建一个大类,用于抽取关键短语。这个大类包含一下几个方法:
- 构造方法:加载3.2中构建的各个组件;
- 添加新的停用词和标点词;
- 获取每个token的编码特征列表;
- 获取每个token的权重列表;
- 获取候选短语列表;
- 从候选短语抽取关键短语;
- 调用方法,给入文本,抽取关键短语;
- 静态方法:获取一个候选的加权表征;
- 静态方法:输入文本预处理。
以上方法将会依次呈现在下面的类中:
class SIFRank:
"""
用于抽取关键短语的SIFRank模型
[步骤]
1. 对原句进行tokenize和词性标注
2. 对原句进行编码,并根据1中tokenize的结果获取embedding_list
3. 根据1中tokenize的结果获取weight_list
4. 抽取原句中的候选关键短语
5. 对候选关键短语进行评分,得到关键短语
---------------
ver: 2021-11-02
by: changhongyu
"""
def __init__(self, tokenize_and_postag_model, candidate_extractor, lemma_model,
encoding_model, encoding_tokenizer, encoding_pooling, encoding_device,
word2weight_pretrain, stop_words, punctuations):
"""
:param tokenize_and_postag_model: 分词和词性标注模型
:param candidate_extractor: 用于抽取候选短语的模型
:param lemma_model: 用于词根还原的模型, 如果None,则忽略
:param encoding_model: PretrainedModel: 编码预训练模型
:param encoding_tokenizer: PretrainedTokenizer: 编码时的tokenizer
:param encoding_pooling: str: 编码时的池化策略, 'mean'或'max'
:param encoding_device: str: 编码时的设备, 'cpu'或'cuda'
:param word2weight_pretrain: dict: 词汇对应权重的大list
:param stop_words: list: 停用词表
:param punctuations: list: 标点符号表
"""
assert encoding_pooling in ['mean', 'max'], Exception("Pooling must be either mean or max.")
assert encoding_device.startswith('cuda') or encoding_device == 'cpu'
self.tokenize_and_postag_model = tokenize_and_postag_model
self.extractor = candidate_extractor
self.lemma_model = lemma_model
self.encoding_model = encoding_model
self.encoding_tokenizer = encoding_tokenizer
self.encoding_pooling = encoding_pooling
self.encoding_device = torch.device(encoding_device)
self.word2weight_pretrain = word2weight_pretrain
self.stop_words = stop_words
self.punctuations = punctuations
print(self)
def __repr__(self):
infos = ['------SIFRank for key-phrase extract------\n',
'SETTINGS: \n'
'tokenize_and_postag_model: {}\n'.format(str(type(self.tokenize_and_postag_model)).replace("'>", "").split('.')[-1]),
'lemma_model: {}\n'.format(str(type(self.lemma_model)).replace("'>", "").split('.')[-1]),
'encoding_model: {}\n'.format(str(type(self.encoding_model)).replace("'>", "").split('.')[-1]),
'encoding_device: {}\n'.format(self.encoding_device),
'encoding_pooling: {}\n'.format(self.encoding_pooling),
]
return ''.join(info for info in infos)
def add_stopword(self, stop_word):
"""
添加停用词,注意停用词是指英文停用词
"""
self.stop_words.append(stop_word)
def add_punctuation(self, punctuation):
"""
添加标点符
"""
self.punctuations.append(punctuation)
def _get_embedding_list(self, text, target_tokens):
"""
获取以token为划分的embedding的list
TODO: 对原句进行清洗,过滤掉对encoding_tokenizer而言OOV的词(耗时太长)
:param text: str: 原文
:param target_tokens: list: tokenize_and_postag_model对当前输入的分词结果
"""
embedding_list = []
self.encoding_model.to(self.encoding_device)
## <1. 获取编码
features = self.encoding_tokenizer(text.lower().replace(' ', '-'),
max_length=1024,
truncation=True,
padding='longest',
return_tensors='pt')
input_ids = features['input_ids'].to(self.encoding_device)
# token_type_ids = features['token_type_ids'].to(self.encoding_device)
attention_mask = features['attention_mask'].to(self.encoding_device)
with torch.no_grad():
# enconding_out = self.encoding_model(input_ids, token_type_ids, attention_mask)
# last_hidden_state = enconding_out['last_hidden_state'].squeeze(0).detach().cpu().numpy()
enconding_out, _ = process_long_input(self.encoding_model,
input_ids,
attention_mask,
[self.encoding_tokenizer.cls_token_id],
[self.encoding_tokenizer.sep_token_id])
# last_hidden_state: (len, hidden)
last_hidden_state = enconding_out.squeeze(0).detach().cpu().numpy()
## 1>
## <2. token对齐
t_mapping = rematch(text, target_tokens, do_lower_case=True)
s_mapping = rematch(text, self.encoding_tokenizer.tokenize(text), do_lower_case=True)
token_lens = []
t_pointer = 0
t = t_mapping[t_pointer]
cur_len = 0
cur_in_t = 0
for s in s_mapping:
# print(s, t[cur_in_t: cur_in_t + len(s)])
if s == t[cur_in_t: cur_in_t + len(s)]:
cur_len += 1
cur_in_t += len(s)
if cur_in_t == len(t):
# 判断当前target结束
token_lens.append(cur_len)
cur_len = 0
cur_in_t = 0
t_pointer += 1
if t_pointer >= len(t_mapping):
break
t = t_mapping[t_pointer]
## 2>
assert len(token_lens) == len(target_tokens), \
Exception("Token_lens and target_tokens shape unmatch: {} vs {}.".format(len(token_lens), len(target_tokens)))
## <3 根据token_len获取对应的embedding池化
cur_pos = 0
for token_len in token_lens:
if token_len == 0:
# 如果是空字符,则置为全零
cur_emb = np.zeros(last_hidden_state.shape[1])
embedding_list.append(cur_emb)
continue
if self.encoding_pooling == 'mean':
cur_emb = np.mean(last_hidden_state[cur_pos: cur_pos + token_len][:], axis=0)
elif self.encoding_pooling == 'max':
cur_emb = np.max(last_hidden_state[cur_pos: cur_pos + token_len][:], axis=0)
else:
raise ValueError("Pooling Strategy must be either mean or max.")
cur_pos += token_len
embedding_list.append(cur_emb)
## 3>
assert len(embedding_list) == len(target_tokens), \
Exception("Result embedding list must have same length as target.")
return embedding_list
def _get_weight_list(self, target_tokens):
"""
获取weight列表
:param target_tokens: list: tokenize_and_postag_model对当前输入的分词结果
:return weight_list: list of float: 每个token对应的预训练权重列表
"""
weight_list = []
_max = 0.
for token in target_tokens:
token = token.lower()
if token in self.stop_words or token in self.punctuations:
weight = 0.
elif token in self.word2weight_pretrain:
weight = word2weight_pretrain[token]
else:
# 如果OOV,返回截至当前句中最大的token
weight = _max
_max = max(weight, _max)
weight_list.append(weight)
return weight_list
def _get_candidate_list(self, target_tokens, target_poses):
"""
用词性正则抽取候选关键短语列表
:param target_tokens: list: tokenize_and_postag_model对当前输入的分词结果
:param target_poses: list: tokenize_and_postag_model对当前输入词性标注结果
:return candidates: list of tuples like: ('自然语言', (5, 7))
NOTE: tuple[1]是在target_tokens中的span,对target_tokens索引,得到tuple[0]
"""
assert len(target_tokens) == len(target_poses)
tokens_tagged = [(tok, pos) for tok, pos in zip(target_tokens, target_poses)]
candidates = self.extractor.extract_candidates(tokens_tagged)
return candidates
def _extract_keyphrase(self, candidates, weight_list, embedding_list, max_keyphrase_num):
"""
对候选的关键短语计算与原文编码的相似度,获取关键短语
:param candidates: list of tuples: 候选关键短语list
:param weight_list: list of float: 每个token的预训练权重列表
:param embedding_list: list of array: 每个token的编码结果
:param max_keyphrase_num: int: 最多保留的关键词个数
:return key_phrases: list of tuple: [(k1, 0.9), ...]
"""
assert len(weight_list) == len(embedding_list)
# 获取每个候选短语的编码
candidate_embeddings_list = []
for cand in candidates:
cand_emb = self.get_candidate_weight_avg(weight_list, embedding_list, cand[1])
candidate_embeddings_list.append(cand_emb)
# 计算候选短语与原文的相似度
sent_embeddings = self.get_candidate_weight_avg(weight_list, embedding_list, (0, len(embedding_list)))
sim_list = []
for i, emb in enumerate(candidate_embeddings_list):
sim = float(pytorch_cos_sim(sent_embeddings, candidate_embeddings_list[i]).squeeze().numpy())
sim_list.append(sim)
# 对候选短语归并,词根相同的短语放在一起
dict_all = {}
for i, cand in enumerate(candidates):
if self.lemma_model:
cand_lemma = self.lemma_model.lemmatize(cand[0].lower()).replace('▲', ' ')
else:
cand_lemma = cand[0].lower().replace('▲', ' ')
if cand_lemma in dict_all:
dict_all[cand_lemma].append(sim_list[i])
else:
dict_all[cand_lemma] = [sim_list[i]]
# 对归并结果求平均
final_dict = {}
for cand, sim_list in dict_all.items():
sum_sim = sum(sim_list)
final_dict[cand] = sum_sim / len(sim_list)
return sorted(final_dict.items(), key=lambda x: x[1], reverse=True)[: max_keyphrase_num]
def __call__(self, text, max_keyphrase_num):
"""
抽取关键词
:param text: str: 待抽取原文
:param max_keyphrase_num: int: 最多保留的关键词个数
:return key_phrases: list of tuple: [(k1, 0.9), ...]
"""
text = self.preprocess_input_text(text)
t0 = time.time()
## <1. 对原句进行tokenize和词性标注
token_and_pos = self.tokenize_and_postag_model.cut(text)
target_tokens = [t_p[0] for t_p in token_and_pos]
target_poses = [t_p[1] for t_p in token_and_pos]
for i, token in enumerate(target_tokens):
if token in self.stop_words:
target_poses[i] = "u"
if token == '-':
target_poses[i] = "-"
if token in ['"', "'"]:
target_poses[i] = '"'
t1 = time.time()
print("耗时统计")
print("<1. 对原句进行tokenize和词性标注: ", round(t1 - t0, 2), 's')
## 1>
## <2. 对原句进行编码,并根据1中tokenize的结果获取embedding_list
embedding_list = self._get_embedding_list(text, target_tokens)
t2 = time.time()
print("<2. 对原句进行编码: ", round(t2 - t1, 2), 's')
## 2>
## <3. 根据1中tokenize的结果获取weight_list
weight_list = self._get_weight_list(target_tokens)
t3 = time.time()
print("<3. 结果获取weight_list: ", round(t3 - t2, 2), 's')
## 3>
## <4. 抽取原句中的候选关键短语
candidate_list = self._get_candidate_list(target_tokens, target_poses)
t4 = time.time()
print("<4. 抽取原句中的候选关键短语: ", round(t4 - t3, 2), 's')
## 4>
## <5. 对候选关键短语进行评分,得到关键短语
key_phrases = self._extract_keyphrase(candidate_list, weight_list,
embedding_list, max_keyphrase_num)
t5 = time.time()
print("<5. 对候选关键短语进行评分: ", round(t5 - t4, 2), 's')
## 5>
return key_phrases
@staticmethod
def get_candidate_weight_avg(weight_list, embedding_list, candidate_span):
"""
获取一个候选词的加权表征
:param weight_list: list of float: 每个token的预训练权重列表
:param embedding_list: list of array: 每个token的编码结果
:param candidate_span: tuple: 候选短语的start和end
"""
assert len(weight_list) == len(embedding_list)
start, end = candidate_span
num_words = end - start
embedding_size = embedding_list[0].shape[0]
sum_ = np.zeros(embedding_size)
for i in range(start, end):
tmp = embedding_list[i] * weight_list[i]
sum_ += tmp
return sum_
@staticmethod
def preprocess_input_text(text):
"""
对输入原文进行预处理,主要防止两个tokenizer对齐时出现问题
"""
text = text.lower()
# 全部判断过于耗时
# text = ''.join(char for char in text if char in self.encoding_tokenizer.vocab)
text = text.replace('“', '"').replace('”', '"')
text = text.replace('‘', "'").replace('’', "'")
text = text.replace('⁃', '-')
text = text.replace('\u3000', ' ').replace('\n', ' ')
text = text.replace(' ', '▲')
# text = text.replace(' ', '¤')
return text[: 1024]
注意,在上面的类中调用了sentence-transformer中的pytorch_cos_sim方法计算两个张量之间的余弦相似度,如果没有安装这个包,可以自己写个方法实现余弦相似度的计算,这个不难,可以直接百度到。
3.4 抽取应用
将上面的大类实例化:
keyphrase_extractor = SIFRank(tokenize_and_postag_model=ltp_pos_model,
candidate_extractor=candidate_extractor,
lemma_model=lemma_model,
encoding_model=electra_model,
encoding_tokenizer=electra_tokenizer,
encoding_pooling='mean',
encoding_device='cuda:1',
word2weight_pretrain=word2weight_pretrain,
stop_words=stop_words,
punctuations=punctuations)
然后对输入的text,调用:
keyphrase_extractor(text, max_keyphrase_num=10)
即可返回关键短语的降序排列,以及每个关键短语对应的得分。
4. 改进
4.1 增加候选关键短语
候选关键短语是通过正则的方式对词性进行匹配得到的,其关键代码在这一句:
grammar = """ NP:
{<n.*|a|uw|i|j|x>*<n.*|uw|x>|<x|j><-><m|q>} # Adjective(s)(optional) + Noun(s)"""
通过修改正则语句,我们可以获得自己想要的候选短语。例如,我希望拿到*'"花岗岩"超声速反舰导弹*这样的短语作为关键短语,通过观察词性发现,这类短语的词性构成是:引号+名词+引号+若干名词,翻译成正则语句就是:
<"><n.*><"><n.*>*<n.*>
把它拼接到原来的语句上:
grammar = """ NP:
{<n.*|a|uw|i|j|x>*<n.*|uw|x>|<x|j><-><m|q>|<"><n.*><"><n.*>*<n.*>}"""