Stage在提交过程中,会产生两种Task,ShuffleMapTask和ResultTask。在ShuffleMapTask执行过程中,会产生Shuffle结果的写磁盘操作。

1. ShuffleMapTask.runTask


此方法是Task执行的入口。


override def runTask(context: TaskContext): MapStatus = {
    // Deserialize the RDD using the broadcast variable.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
    metrics = Some(context.taskMetrics)
    var writer: ShuffleWriter[Any, Any] = null
    try {
      val manager = SparkEnv.get.shuffleManager
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
      return writer.stop(success = true).get
    } catch {
      ...
    }
  }


(1)从SparkEnv中获取ShuffleManager对象;


(2)ShuffleManager对象将创建ShuffleWriter对象;


(3)通过ShuffleWriter对象进行shuffle结果写操作。


ShuffleManager是一个trait,它有两个具体实现:


HashShuffleManager和SortShuffleManager。


SortShuffleManager实现。代码如下:


val shortShuffleMgrNames = Map(
      "hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager",
      "sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")
    val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")
    val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)
    val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)


具体代码见SparkEnv.create方法。


2. 类关系图


spark 写入块默认大小是多少_文件名




3. HashShuffleManager


private[spark] class HashShuffleManager(conf: SparkConf) extends ShuffleManager {
  private val fileShuffleBlockManager = new FileShuffleBlockManager(conf)
  ...


HashShuffleManager通过FileShuffleBlockManager来管理Shuffle Block。


3.1. HashShuffleWriter


HashShuffleManager.getWriter方法创建该对象。


private[spark] class HashShuffleWriter[K, V](
    shuffleBlockManager: FileShuffleBlockManager,
    handle: BaseShuffleHandle[K, V, _],
    mapId: Int,
    context: TaskContext)
  extends ShuffleWriter[K, V] with Logging {
  private val dep = handle.dependency
  private val numOutputSplits = dep.partitioner.numPartitions
  private val metrics = context.taskMetrics
  // Are we in the process of stopping? Because map tasks can call stop() with success = true
  // and then call stop() with success = false if they get an exception, we want to make sure
  // we don't try deleting files, etc twice.
  private var stopping = false
  private val writeMetrics = new ShuffleWriteMetrics()
  metrics.shuffleWriteMetrics = Some(writeMetrics)
  private val blockManager = SparkEnv.get.blockManager
  private val ser = Serializer.getSerializer(dep.serializer.getOrElse(null))
  private val shuffle = shuffleBlockManager.forMapTask(dep.shuffleId, mapId, numOutputSplits, ser,
    writeMetrics)
  ...


HashShuffleWriter构造体中最重要的工作就是调用FileShuffleBlockManager.forMapTask方法来创建ShuffleWriterGroup对象。


3.1.1. ShuffleWriterGroup


/** A group of writers for a ShuffleMapTask, one writer per reducer. */
private[spark] trait ShuffleWriterGroup {
  val writers: Array[BlockObjectWriter]
  /** @param success Indicates all writes were successful. If false, no blocks will be recorded. */
  def releaseWriters(success: Boolean)
}


如果注释所描述,ShuffleWriterGroup就是writer的集合。


3.1.2. FileShuffleBlockManager.forMapTask


def forMapTask(shuffleId: Int, mapId: Int, numBuckets: Int, serializer: Serializer,
      writeMetrics: ShuffleWriteMetrics) = {
    new ShuffleWriterGroup {
      shuffleStates.putIfAbsent(shuffleId, new ShuffleState(numBuckets))
      private val shuffleState = shuffleStates(shuffleId)
      private var fileGroup: ShuffleFileGroup = null
      ...
    }
  }


参数说明:



(1)mapId:RDD分区的编号;



(2)numBuckets:reudce的数量,即Shuffle输出的分区个数。



HashShuffleManager支持两种创建Writer的方法:consolidate和非consolidate方式,通过spark属性进行设置:



private val consolidateShuffleFiles =
    conf.getBoolean("spark.shuffle.consolidateFiles", false)


3.1.2.1. 非consolidate方式


forMapTask代码的else部分。


} else {
        Array.tabulate[BlockObjectWriter](numBuckets) { bucketId =>
          val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
          val blockFile = blockManager.diskBlockManager.getFile(blockId)
          // Because of previous failures, the shuffle file may already exist on this machine.
          // If so, remove it.
          if (blockFile.exists) {
            if (blockFile.delete()) {
              logInfo(s"Removed existing shuffle file $blockFile")
            } else {
              logWarning(s"Failed to remove existing shuffle file $blockFile")
            }
          }
          blockManager.getDiskWriter(blockId, blockFile, serializer, bufferSize, writeMetrics)
        }
      }


(1)创建长度为numBuckets的BlockObjectWriter数组并遍历数组;


(2)根据ShuffleId、mapid和bucketId创建ShuffleBlockId对象;


(3)根据ShuffleBlockId对象创建文件;


(4)创建DiskBlockObjectWriter对象。


文件名结构:


shuffel_{$shuffleId}_{$mapId}_{$reduceId}


其中:mapId是RDD分区的编号,reduceId即代码中的bucketId,及Shuffle输出分区的编号。


从代码和文件结构可以看出,每个分区即每个ShuffleMapTask都会创建和reduce数量一致的文件数量。


如果一个RDD分区的数量为M,即有M个map task;如果Shuffle输出分区个数为R,那么非consolidate方法将总共会创建M*R个文件。


当M和R很大时,即使这些文件分布在多个节点,也会是一个不小的数字。


Map和Reduce的映射关系示意图如下


spark 写入块默认大小是多少_spark_02




说明:P表示RDD的分区,T表示partition对应的Task,B表示Bucket,File为Bucket对应的文件,R表示Reduce即Shuffle的输出分区。


consolidate方式


forMapTask代码的if部分。


val writers: Array[BlockObjectWriter] = if (consolidateShuffleFiles) {
        fileGroup = getUnusedFileGroup()
        Array.tabulate[BlockObjectWriter](numBuckets) { bucketId =>
          val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
          blockManager.getDiskWriter(blockId, fileGroup(bucketId), serializer, bufferSize,
            writeMetrics)
        }
      }


(1)获取或创建可以使用ShuffleFileGroup对象;


DiskBlockObjectWriter时,是从ShuffleFileGroup中获取文件对象。


ShuffleFileGroup是如何创建的,代码如下:


private def newFileGroup(): ShuffleFileGroup = {
        val fileId = shuffleState.nextFileId.getAndIncrement()
        val files = Array.tabulate[File](numBuckets) { bucketId =>
          val filename = physicalFileName(shuffleId, bucketId, fileId)
          blockManager.diskBlockManager.getFile(filename)
        }
        val fileGroup = new ShuffleFileGroup(shuffleId, fileId, files)
        shuffleState.allFileGroups.add(fileGroup)
        fileGroup
      }



(1)获取文件id,fileId;


创建长度为numBuckets的File数组并遍历数组来初始化数组元素;


(3)根据shuffleId、bucketId和fileId创建block文件名;


(4)创建shuffle输出文件;


(5)创建ShuffleFileGroup对象,其本质上就是一个File数组。




文件名结构:


merged_shuffle_{$shuffleId}_{$bucketId}_{$fileId}


从代码和文件结构可以看出,每个分区即每个ShuffleMapTask都会对应一个上述的文件。当多个ShuffleMapTask在一个core上串行执行时,它们会将数据写入相同的文件;当多个ShuffleMapTask在一个worker上并行执行时,从代码可以看出,文件名发生变化的只有FileId部分,所以在一个节点上所产生的文件数量最多为cores*R(其中cores表示分配个app的core的数量,R为reudce数量)。


由于多个map将block数据写入同一个文件,每个block占用文件的一个段,因此需要一个数据结构来保存给block在文件中的偏移和block长度。


ShuffleFileGroup类中定义了三个结构来实现这个功能,代码如下:


/**
     * Stores the absolute index of each mapId in the files of this group. For instance,
     * if mapId 5 is the first block in each file, mapIdToIndex(5) = 0.
     */
    private val mapIdToIndex = new PrimitiveKeyOpenHashMap[Int, Int]()
    /**
     * Stores consecutive offsets and lengths of blocks into each reducer file, ordered by
     * position in the file.
     * Note: mapIdToIndex(mapId) returns the index of the mapper into the vector for every
     * reducer.
     */
    private val blockOffsetsByReducer = Array.fill[PrimitiveVector[Long]](files.length) {
      new PrimitiveVector[Long]()
    }
    private val blockLengthsByReducer = Array.fill[PrimitiveVector[Long]](files.length) {
      new PrimitiveVector[Long]()
    }


Map和Reduce映射示意图




spark 写入块默认大小是多少_数据_03





在同一core运行的Tasks会共享同一文件,而在一个Executor中并行执行的Tasks拥有各自独立的文件。


mapId和block偏移映射示意图(ShuffleFileGroup)


spark 写入块默认大小是多少_文件名_04




mapIdToIndex是一个hash表,存储mapid到block索引之间的映射关系。通过mapId可以获取对应Block编号,通过block的编号就可以获取map输出到每个分区的偏移和长度。


4. SortShuffleManager


private[spark] class SortShuffleManager(conf: SparkConf) extends ShuffleManager {
  private val indexShuffleBlockManager = new IndexShuffleBlockManager(conf)
  private val shuffleMapNumber = new ConcurrentHashMap[Int, Int]()
  ...


SortShuffleManager通过IndexShuffleBlockManager来管理Shuffle Block。


4.1. SortShuffleWriter.write


override def write(records: Iterator[_ <: Product2[K, V]]): Unit = {
    ......
    val outputFile = shuffleBlockManager.getDataFile(dep.shuffleId, mapId)
    val blockId = shuffleBlockManager.consolidateId(dep.shuffleId, mapId)
    val partitionLengths = sorter.writePartitionedFile(blockId, context, outputFile)
    shuffleBlockManager.writeIndexFile(dep.shuffleId, mapId, partitionLengths)
    mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths)
  }


(1)创建数据文件,文件名格式:


shuffle_{$shuffleId}_{$mapId}_{$reduceId}.data


reduceId值为0


(2)创建ShuffleBlockId对象,其中的reduceId值为0;


(3)将shuffle输出分区写入数据文件;


(4)将分区索引信息写入索引文件,索引文件名格式:


shuffle_{$shuffleId}_{$mapId}_{$reduceId}.index


(5)创建MapStatus对象并返回。


Map和Reduce映射示意图



spark 写入块默认大小是多少_数据_05





可见,在SortShuffleManager下,每个map对应两个文件:data文件和index文件。


其中.data文件存储Map输出分区的数据,.index文件存储每个分区在.data文件中的偏移量及数据长度。


4.2. IndexShuffleBlockManager.writeIndexFile


def writeIndexFile(shuffleId: Int, mapId: Int, lengths: Array[Long]) = {
    val indexFile = getIndexFile(shuffleId, mapId)
    val out = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(indexFile)))
    try {
      // We take in lengths of each block, need to convert it to offsets.
      var offset = 0L
      out.writeLong(offset)
      for (length <- lengths) {
        offset += length
        out.writeLong(offset)
      }
    } finally {
      out.close()
    }
  }


实际只存储了每个分区的偏移,通过偏移来计算每个分区的长度。