在深度学习模型训练过程中,在服务器端或者本地pc端,输入nvidia-smi来观察显卡的GPU内存占用率(Memory-Usage),显卡的GPU利用率(GPU-util),然后采用top来查看CPU的线程数(PID数)和利用率(%CPU)。往往会发现很多问题,比如,GPU内存占用率低,显卡利用率低,CPU百分比低等等。接下来仔细分析这些问题和处理办法。

1. GPU内存占用率问题

模型的大小,包括网络的宽度,深度,参数量,中间每一层的缓存,都会在内存中开辟空间来进行保存,所以模型本身会占用很大一部分内存。其次是batch size的大小,也会占用影响内存占用率。batch size设置为128,与设置为256相比,内存占用率是接近于2倍关系。当你batch  size设置为128,占用率为40%的话,设置为256时,此时模型的占用率约等于80%,偏差不大。所以在模型结构固定的情况下,尽量将batch size设置大,充分利用GPU的内存。(GPU会很快的算完你给进去的数据,主要瓶颈在CPU的数据吞吐量上面。)

2. GPU利用率问题

Volatile GPU-Util表示,当没有设置好CPU的线程数时,这个参数是在反复的跳动的,0%,20%,70%,95%,0%。这样停息1-2 秒然后又重复起来。其实是GPU在等待数据从CPU传输过来,当从总线传输到GPU之后,GPU逐渐起计算来,利用率会突然升高,但是GPU的算力很强大,0.5秒就基本能处理完数据,所以利用率接下来又会降下去,等待下一个batch的传入。因此,这个GPU利用率瓶颈在内存带宽和内存介质上以及CPU的性能上面。最好当然就是换更好的四代或者更强大的内存条,配合更好的CPU。

数据加载Dataloader上做更改和优化,包括num_workers(线程数),pin_memory,会提升速度。解决好数据传输的带宽瓶颈和GPU的运算效率低的问题。在TensorFlow下面,也有这个加载数据的设置。

torch.utils.data.DataLoader(image_datasets[x],                            batch_size=batch_size,                             shuffle=True,                            num_workers=8,                            pin_memory=True)

首先要将num_workers(线程数)设置得体,4,8,16是几个常选的几个参数。本人测试过,将num_workers设置的非常大,例如,24,32,等,其效率反而降低,因为模型需要将数据平均分配到几个子线程去进行预处理,分发等数据操作,设高了反而影响效率。当然,线程数设置为1,是单个CPU来进行数据的预处理和传输给GPU,效率也会低。其次,当你的服务器或者电脑的内存较大,性能较好的时候,建议打开pin_memory打开,就省掉了将数据从CPU传入到缓存RAM里面,再给传输到GPU上;为True时是直接映射到GPU的相关内存块上,省掉了一点数据传输时间。

3. CPU的利用率问题

2349%(我的服务器是32核的,所以最高为3200%)。这表明用了24核CPU来加载数据和做预处理和后处理等。其实主要的CPU花在加载传输数据上。此时,来测量数据加载的时间发现,即使CPU利用率如此之高,其实际数据加载时间是设置恰当的DataLoader的20倍以上,也就是说这种方法来加载数据慢20倍。当DataLoader的num_workers=0时,或者不设置这个参数,会出现这个情况。


gpu利用率太低了 pytorch 提高gpu利用率pytorch_gpu利用率太低了 pytorch

CPU利用率查看结果

        下图中可以看出,加载数据的实际是12.8s,模型GPU运算时间是0.16s,loss反传和更新时间是0.48s。此时,即使CPU为2349%,但模型的训练速度还是非常慢,而且,GPU大部分是时间是空闲等待状态。


gpu利用率太低了 pytorch 提高gpu利用率pytorch_加载数据_02

num_workers=0,模型每个阶段运行时间统计

num_workers=1时,出现的时间统计如下,load data time为6.3,数据加载效率提升1倍。且此时的CPU利用率为170%,用的CPU并不多,性能提升1倍。


gpu利用率太低了 pytorch 提高gpu利用率pytorch_加载数据_03

num_workers=1时,模型每个阶段运行时间统计

CPU疯狂加载数据,而GPU处于空闲状态。


gpu利用率太低了 pytorch 提高gpu利用率pytorch_gpu利用率太低了 pytorch_04

1,2,3号GPU的内存占用率和计算效率截图

        由此可见,CPU的利用率不一定最大才最好。

增加DataLoader这个num_wokers的个数,主要是增加子线程的个数,来分担主线程的数据处理压力,多线程协同处理数据和传输数据,不用放在一个线程里负责所有的预处理和传输任务。

num_workers=8,线程数有了8个连续开辟的线程PID,且大家的占用率都在100%左右,这表明模型的CPU端,是较好的分配了任务,提升数据吞吐效率。效果如下图所示,CPU利用率很平均和高效,每个线程是发挥了最大的性能。


gpu利用率太低了 pytorch 提高gpu利用率pytorch_gpu利用率太低了 pytorch_05

num_workers=8时,CPU利用率和8个连续PID任务

        此时,在用nvidia-smi查看GPU的利用率,几块GPU都在满负荷,满GPU内存,满GPU利用率的处理模型,速度得到巨大提升。


gpu利用率太低了 pytorch 提高gpu利用率pytorch_数据_06

优化数据加载num_workers=8,和设置batch size的结果

        上图中可以看见,GPU的内存利用率最大化,此时是将batch size设置的较大,占满了GPU的内存,然后将num_workers=8,分配多个子线程,且设置pin_memory=True,直接映射数据到GPU的专用内存,减少数据传输时间。GPU和CPU的数据瓶颈得到解决。整体性能得到权衡。

        此时的运行时间在表中做了统计:


处理时间统计

处理阶段

时间

数据加载

0.25s

模型在GPU计算

0.21s

loss反传,参数更新

0.43s


4. 总结

第一是增加batch size,增加GPU的内存占用率,尽量用完内存,而不要剩一半,空的内存给另外的程序用,两个任务的效率都会非常低。第二,在数据加载时候,将num_workers线程数设置稍微大一点,推荐是8,16等,且开启pin_memory=True。不要将整个任务放在主进程里面做,这样消耗CPU,且速度和性能极为低下。

 

 




Supplementary:看到大家在评论回复的问题比较多,所以再加一些叙述!

开这么多线程。第一个,查看你的数据的batch_size,batchsize小了,主CPU直接就加载,处理,而且没有分配到多GPU里面(如果你使用的是多GPU);如果是单GPU,那么就是CPU使劲读数据,加载数据,然后GPU一下就处理完了,你的模型应该是很小,或者模型的FLOPs很小。检查一下模型问题。还有就是,现在这个情况下,开8个线程和1个线程,没什么影响,你开一个num_workers都一样的。如果速度快,没必要分配到多个num_workers去。当数据量大的时候,num_workers设置大,会非常降低数据加载阶段的耗时。这个主要还是应该配合过程。

在调试过程,命令:top     实时查看你的CPU的进程利用率,这个参数对应你的num_workers的设置;

命令:   watch -n 0.5 nvidia-smi    每0.5秒刷新并显示显卡设置。

实时查看你的GPU的使用情况,这是GPU的设置相关。这两个配合好。包括batch_size的设置。

                                                                                                                                                                  时间:2019年9月20日