JOIN语句原理

join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会非常长。在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。

驱动表和被驱动表

驱动表就是主表,被驱动表就是从表、非驱动表

SELECT * FROM A JOIN B ON ...

A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过explain关键字可以查看。

  • 左外连接加where作为筛选条件,查询优化器帮我做了优化,把b作为驱动表,a作为被驱动表
EXPLAIN SELECT * FROM a LEFT JOIN b ON
(a.`f1` = b.`f1`) WHERE a.`f2`=b.`f2`;

mysql内连接怎么选取驱动表 mysql join 驱动表_索引

  • 左外连接加and,将and都作为on的条件,这也是和上面的where的区别。(这里查询优化器没有帮我们进行调整)
EXPLAIN SELECT * FROM a LEFT JOIN b ON
(a.`f1` = b.`f1`) AND a.`f2`=b.`f2`;

mysql内连接怎么选取驱动表 mysql join 驱动表_索引_02

  • 采用内连接
EXPLAIN SELECT * FROM a  JOIN b ON
(a.`f1` = b.`f1`) WHERE a.`f2`=b.`f2`;

mysql内连接怎么选取驱动表 mysql join 驱动表_mysql内连接怎么选取驱动表_03

Simple Nested-Loop Join(简单嵌套循环匹配)

算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result…以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断:

mysql内连接怎么选取驱动表 mysql join 驱动表_mysql_04

可以看到这种方式效率是非常低的,以上述表A数据100条,表B数据1000条计算,则A*B= 10万次。开销统计如下:

开销统计

SNLJ

外表扫描次数:

1

内表扫描次数:

A

读取记录数:

A+B*A(小表驱动大表A越小越好 )

JOIN比较次数:

B*A

回表读取记录次数:(因为不涉及到二级索引)

0

当然mysql肯定不会这么粗暴的去进行表的连接

Index Nested-Loop Join(嵌套循环连接)

Index Nested-Loop Join其优化思路主要是为了减少内层表数据的匹配次数,所以要求被驱动表上必须有索引才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内层表每层记录进行比较,这样极大的减少了对内层表的匹配次数。

mysql内连接怎么选取驱动表 mysql join 驱动表_mysql_05

驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)。

开销统计

SNLJ

简单嵌套循环匹配

INLJ

嵌套循环连接

外表扫描次数

1

1

内表扫描次数

A

0

读取记录数

A+B*A

A+B(match)(match是匹配的次数)

JOIN比较次数

B*A

A*index(Height)(Hight是B+树的高度)

回表读取记录次数

0

B(match)(if possible主键索引不用回表,二级索引要回表)

如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高。

Block Nest-Loop Join(块嵌套循环连接)

如果存在索引,那么会使用index的方式进行join,如果join的列没有索引,被驱动表要扫描的次数太多了。每次访问被驱动表,其表中的记录都会被加载到内存中,然后再从驱动表中取一条与其匹配,匹配结束后清除内存,然后再从驱动表中加载一条记录,然后把被驱动表的记录在加载到内存匹配,这样周而复始,大大增加了IO的次数。为了减少被驱动表的IO次数,就出现了Block Nested-Loop Join的方式。

不再是逐条获取驱动表的数据,而是一块一块的获取,引入了join buffer缓冲区,将驱动表join相关的部分数据列(大小受join buffer的限制)缓存到join buffer中,然后全表扫描被驱动表,被驱动表的每一条记录一次性和join buffer中的所有驱动表记录进行匹配(内存中操作),将简单嵌套循环中的多次比较合并成一次,降低了被驱动表的访问频率。

注意:

这里缓存的不只是关联表的列,select后面的列也会缓存起来。(所有尽量少投影*)

在一个有N个join关联的sql中会分配N-1个join buffer。所以查询的时候尽量减少不必要的字段,可以让join buffer中可以存放更多的列。

mysql内连接怎么选取驱动表 mysql join 驱动表_索引_06

开销统计

SNLJ

INLJ

BNLJ

外表扫描次数

1

1

1

内表扫描次数

A

0

A * use_cloumn_size / join_buffer_size + 1

读取记录数

A+B*A

A+B(match)

A+B*(A * use_cloumn_size / join_buffer_size)

JOIN比较次数

B * A

A * index(Height)

B * A

回表读取记录次数

0

B(match)(if possible)

0

参数设置:

  • block_nested_loop

通过show variables like '%optimizer_switch' 查看block_nested_loop状态。默认是开启的。

show variables like '%optimizer_switch';
  • join_buffer

驱动表不能一次性加载完,要看join buffer能不能存储所有的数据,默认情况下join_buffer_size=256k

show variables like '%join_buffer%';
mysql> show variables like '%join_buffer%';
+------------------+--------+
| Variable_name    | Value  |
+------------------+--------+
| join_buffer_size | 262144 |
+------------------+--------+
1 row in set (0.00 sec)

join_buffer_size的最大值在32位系统可以申请4G,而在64位操做系统下可以申请大于4GJoin Buffer空间(64位Windows除外,其大值会被截断为4GB并发出警告)。

Join小结

  1. 整体效果比较:INLJ > BNLJ > SNLJ
  2. 永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量) (小的度量单位指的是表行数*每行大小)(也就是要看过滤以后的结果集)

假设t2表的字段数量大于1,如果用第二的话,t2.*要比t1.b的字段要多,在join_buffer里面能加载到的条目数就减少了。

select t1.b, t2.* from t1 straight.join t2 on (t1.b=t2.b) where t2.id<=108;#推荐
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100;#不推荐
  1. 为被驱动表匹配的条件添加索引(减少内层循环匹配次数)
  2. 增加join buffer size的大小(一次缓存的数据越多,那么内层包的扫描次数就越少)
  3. 减少驱动表不必要的字段查询(字段越少,join buffer所缓存的数据就越多)

Hash Join

从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join

  • Nested Loop 对于被连接的数据子集较小的情况,Nested Loop是个较好的选择。
  • Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列表,然后扫描较大的表并探测散列表,找出与Hash表匹配的行。
  • 这种方式适用于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。
  • 在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。
  • 它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1=B.COL2),这是由Hash的特点决定的。

类别

Nested Loop

Hash Join

使用索引条件

任何条件

等值条件(=)

相关资源

CPU、磁盘I/O

内存、临时空间

特点

当有高选择性索引或进行限制性搜索时效率比较高,能够快速返回第一次的搜索结果。

当缺乏索引或者索引条件模糊时,Hash Join比NestedLoop有效。在数据仓库环境下,如果表的纪录数多,效率高。

缺点

当索引丢失或者查询条件限制不够时,效率很低;当表的纪录数多时,效率低。

为建立哈希表,需要大量内存。第一次的结果返回较慢。

小结

  • 保证被驱动表的JOIN字段已经创建了索引
  • 需要JOIN的字段,数据类型保持绝对一致。
  • LEFT JOIN时,选择小表作为驱动表,大表作为被驱动表。减少外层循环的次数。
  • INNER JOIN时,MySQL会自动将小结果集的表选为驱动表。选择相信MySQL优化策略。
  • 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)
  • 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用JOIN来代替子查询。
  • 衍生表建不了索引