在机器学习中,看过挺多案例,很多人在处理数据的时候,经常把连续性特征离散化。那么,什么情况下才需要对连续数据离散化呢?

一、什么是离散化?

连续数据:身高,年龄,工资
离散数据:矮,高;红,绿;好,坏……

  • 连续属性的离散化就是将连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数值代表落在每个子区间中的属性值。
  • 数据离散化是指将连续的数据进行分段,使其变为一段段离散化的区间。
  • 连续特征离散化的本质是:决定选择多少个分割点和确定分割点的位置。
  • 分段的原则有基于等距离、等频率或优化的方法。

二、离散化原因

数据离散化的原因主要有以下几点:

  • 1、算法需要
    比如决策树、朴素贝叶斯等算法,都是基于离散型的数据展开的。如果要使用该类算法,必须将离散型的数据进行。有效的离散化能减小算法的时间和空间开销,提高系统对样本的分类聚类能力和抗噪声能力。
  • 2、离散化的特征相对于连续型特征更易理解,更接近知识层面的表达
    比如工资收入,月薪2000和月薪20000,从连续型特征来看高低薪的差异还要通过数值层面才能理解,但将其转换为离散型数据(底薪、高薪),则可以更加直观的表达出了我们心中所想的高薪和底薪。
  • 3、可以有效的克服数据中隐藏的缺陷,使模型结果更加稳定

三、离散化的优势

  • 1、离散特征的增加和减少都很容易,易于模型的快速迭代;
  • 2、稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
    离散化后的特征对异常数据有很强的鲁棒性(稳定性):比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
  • 3、逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;
  • 4、离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
  • 5、特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;
  • 6、特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

四、离散化的方法

1、无监督学习方法
  • 等宽法
    等宽法即是将属性值分为具有相同宽度的区间,区间的个数k根据实际情况来决定。比如属性值在[0,60]之间,最小值为0,最大值为60,我们要将其分为3等分,则区间被划分为[0,20] 、[21,40] 、[41,60],每个属性值对应属于它的那个区间
  • 等频法
    等宽法即是将属性值分为具有相同宽度的区间,区间的个数k根据实际情况来决定。比如有60个样本,我们要将其分为k=3部分,则每部分的长度为20个样本。
  • 基于聚类的方法
    基于聚类的方法分为两个步骤,即:
    选定聚类算法将其进行聚类,将在同一个簇内的属性值做为统一标记。
    注:基于聚类的方法,簇的个数要根据聚类算法的实际情况来决定,比如对于k-means算法,簇的个数可以自己决定,但对于DBSCAN,则是算法找寻簇的个数。

2、有监督学习方法:

  • 1R方法
  • 基于信息熵的方法
  • 基于卡方的方法

五、离散化处理的一般过程

  • 对连续特征值按照某种指定的规则进行排序
  • 初步确定连续属性的划分断点
  • 按照某种给定的判断标准继续分割断点或合并断点
  • 如果第三步得到判断标准的终止条件,则终止整个连续特征离散化的过程,否则继续按第三步执行

六、离散化方法的评价

区间的个数:是对模型简洁性的要求
离散化所导致的不一致性:离散化后的不一致性不能比离散化之前高。
预测准确性:通常通过交叉检验模式建立分叉树来衡量。
具有最简单的离散化结果

欢迎批评指正!