文章目录
- Persistent Volume(PV)和 Persistent Volume Claim(PVC)
- StorageClass
- 本地持久化卷
- 存储插件实践
Persistent Volume(PV)和 Persistent Volume Claim(PVC)
- PV 描述的,是持久化存储数据卷。这个 API 对象主要定义的是一个持久化存储在宿主机上的目录,比如一个 NFS 的挂载目录。
- 通常情况下,PV 对象是由运维人员事先创建在 Kubernetes 集群里待用的。比如,运维人员可以定义这样一个 NFS 类型的 PV,如下所示:
apiVersion: v1
kind: PersistentVolume
metadata:
name: nfs
spec:
storageClassName: manual
capacity:
storage: 1Gi
accessModes:
- ReadWriteMany
nfs:
server: 10.244.1.4
path: "/"
- PVC 描述的,则是 Pod 所希望使用的持久化存储的属性。比如,Volume 存储的大小、可读写权限等等。
- PVC 对象通常由开发人员创建;或者以 PVC 模板的方式成为 StatefulSet 的一部分,然后由 StatefulSet 控制器负责创建带编号的 PVC。比如,开发人员可以声明一个 1 GiB 大小的 PVC,如下所示:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: nfs
spec:
accessModes:
- ReadWriteMany
storageClassName: manual
resources:
requests:
storage: 1Gi
- 用户创建的 PVC 要真正被容器使用起来,就必须先和某个符合条件的 PV 进行绑定。这里要检查的条件,包括两部分:
- 第一个条件,当然是 PV 和 PVC 的 spec 字段。比如,PV 的存储(storage)大小,就必须满足 PVC 的要求。
- 第二个条件,则是 PV 和 PVC 的 storageClassName 字段必须一样。
PVC 和 PV 的设计,其实跟“面向对象”的思想完全一致。
- PVC 可以理解为持久化存储的“接口”,它提供了对某种持久化存储的描述,但不提供具体的实现;而这个持久化存储的实现部分则由 PV 负责完成。
- Kubernetes 中,存在着一个专门处理持久化存储的控制器,叫作 Volume Controller。这个 Volume Controller 维护着多个控制循环,其中有一个循环,扮演的就是撮合 PV 和 PVC 的“红娘”的角色。它的名字叫作 PersistentVolumeController。
- PersistentVolumeController 会不断地查看当前每一个 PVC,是不是已经处于 Bound(已绑定)状态。如果不是,那它就会遍历所有的、可用的 PV,并尝试将其与这个“单身”的 PVC 进行绑定。这样,Kubernetes 就可以保证用户提交的每一个 PVC,只要有合适的 PV 出现,它就能够很快进入绑定状态。而所谓将一个 PV 与 PVC 进行“绑定”,其实就是将这个 PV 对象的名字,填在了 PVC 对象的 spec.volumeName 字段上。所以,接下来 Kubernetes 只要获取到这个 PVC 对象,就一定能够找到它所绑定的 PV。
- PV 对象,又是如何变成容器里的一个持久化存储的呢?
- 所谓容器的 Volume,其实就是将一个宿主机上的目录,跟一个容器里的目录绑定挂载在了一起。
- “持久化 Volume”,指的就是这个宿主机上的目录,具备“持久性”。即:这个目录里面的内容,既不会因为容器的删除而被清理掉,也不会跟当前的宿主机绑定。这样,当容器被重启或者在其他节点上重建出来之后,它仍然能够通过挂载这个 Volume,访问到这些内容。
- Kubernetes 需要做的工作,就是使用存储服务(比如,NFS、GlusterFS),来为容器准备一个持久化的宿主机目录,以供将来进行绑定挂载时使用。而所谓“持久化”,指的是容器在这个目录里写入的文件,都会保存在远程存储中,从而使得这个目录具备了“持久性”。
- 准备“持久化”宿主机目录的过程,可以形象地称为“两阶段处理”。
- 为虚拟机挂载远程磁盘的操作,对应的正是“两阶段处理”的第一阶段。在 Kubernetes 中,我们把这个阶段称为 Attach。
- 将磁盘设备格式化并挂载到 Volume 宿主机目录的操作,对应的正是“两阶段处理”的第二个阶段,我们一般称为:Mount。
StorageClass
- 随着新的 PVC 不断被提交,运维人员就不得不继续添加新的、能满足条件的 PV,否则新的 Pod 就会因为 PVC 绑定不到 PV 而失败。在实际操作中,这几乎没办法靠人工做到。Kubernetes 为提供了一套可以自动创建 PV 的机制,即:Dynamic Provisioning。Dynamic Provisioning 机制工作的核心,在于一个名叫 StorageClass 的 API 对象。
- StorageClass 对象的作用,其实就是创建 PV 的模板。StorageClass 对象会定义如下两个部分内容:
- 第一,PV 的属性。比如,存储类型、Volume 的大小等等。
- 第二,创建这种 PV 需要用到的存储插件。比如,Ceph 等等。
- 定义一个如下所示的 StorageClass:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: block-service
provisioner: fuseim.pri/ifs
parameters:
type: pd-ssd
- 作为应用开发者,只需要在 PVC 里指定要使用的 StorageClass 名字即可,如下所示:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: claim1
spec:
accessModes:
- ReadWriteOnce
storageClassName: block-service
resources:
requests:
storage: 30Gi
- 在这个 PVC 里添加了一个叫作 storageClassName 的字段,用于指定该 PVC 所要使用的 StorageClass 的名字是:block-service。
Kubernetes 只会将 StorageClass 相同的 PVC 和 PV 绑定起来。
- 有了 Dynamic Provisioning 机制,运维人员只需要在 Kubernetes 集群里创建出数量有限的 StorageClass 对象就可以了。这就好比,运维人员在 Kubernetes 集群里创建出了各种各样的 PV 模板。这时候,当开发人员提交了包含 StorageClass 字段的 PVC 之后,Kubernetes 就会根据这个 StorageClass 创建出对应的 PV。
PVC 和 PV以及StorageClass概念之间的关系,可以用如下所示的一幅示意图描述:
- 在这个体系中:
- PVC 描述的,是 Pod 想要使用的持久化存储的属性,比如存储的大小、读写权限等。
- PV 描述的,则是一个具体的 Volume 的属性,比如 Volume 的类型、挂载目录、远程存储服务器地址等。
- 而 StorageClass 的作用,则是充当 PV 的模板。并且,只有同属于一个 StorageClass 的 PV 和 PVC,才可以绑定在一起。
- 当然,StorageClass 的另一个重要作用,是指定 PV 的 Provisioner(存储插件)。这时候,如果你的存储插件支持 Dynamic Provisioning 的话,Kubernetes 就可以自动为你创建 PV 了。
本地持久化卷
- 用户希望 Kubernetes 能够直接使用宿主机上的本地磁盘目录,而不依赖于远程存储服务,来提供“持久化”的容器 Volume。由于这个 Volume 直接使用的是本地磁盘,尤其是 SSD 盘,它的读写性能相比于大多数远程存储来说,要好得多。这个需求对本地物理服务器部署的私有 Kubernetes 集群来说,非常常见。所以,Kubernetes 在 v1.10 之后,就逐渐依靠 PV、PVC 体系实现了这个特性。这个特性的名字叫作:Local Persistent Volume。
- Local Persistent Volume 并不适用于所有应用。事实上,它的适用范围非常固定,比如:高优先级的系统应用,需要在多个不同节点上存储数据,并且对 I/O 较为敏感。典型的应用包括:分布式数据存储比如 MongoDB、Cassandra 等,分布式文件系统比如 GlusterFS、Ceph 等,以及需要在本地磁盘上进行大量数据缓存的分布式应用。
- 相比于正常的 PV,一旦这些节点宕机且不能恢复时,Local Persistent Volume 的数据就可能丢失。这就要求使用 Local Persistent Volume 的应用必须具备数据备份和恢复的能力,允许你把这些数据定时备份在其他位置。
Local Persistent Volume 的设计,主要面临两个难点:
- 第一个难点在于:如何把本地磁盘抽象成 PV。
- 可能你会说,Local Persistent Volume,不就等同于 hostPath 加 NodeAffinity 吗?比如,一个 Pod 可以声明使用类型为 Local 的 PV,而这个 PV 其实就是一个 hostPath 类型的 Volume。如果这个 hostPath 对应的目录,已经在节点 A 上被事先创建好了。那么,我只需要再给这个 Pod 加上一个 nodeAffinity=nodeA,不就可以使用这个 Volume 了吗?
- 事实上,你绝不应该把一个宿主机上的目录当作 PV 使用。这是因为,这种本地目录的存储行为完全不可控,它所在的磁盘随时都可能被应用写满,甚至造成整个宿主机宕机。而且,不同的本地目录之间也缺乏哪怕最基础的 I/O 隔离机制。
- 所以,一个 Local Persistent Volume 对应的存储介质,一定是一块额外挂载在宿主机的磁盘或者块设备(“额外”的意思是,它不应该是宿主机根目录所使用的主硬盘)。这个原则,我们可以称为“一个 PV 一块盘”。
- 第二个难点在于:调度器如何保证 Pod 始终能被正确地调度到它所请求的 Local Persistent Volume 所在的节点上。
- 造成这个问题的原因在于,对于常规的 PV 来说,Kubernetes 都是先调度 Pod 到某个节点上,然后,再通过“两阶段处理”来“持久化”这台机器上的 Volume 目录,进而完成 Volume 目录与容器的绑定挂载。
- 可是,对于 Local PV 来说,节点上可供使用的磁盘(或者块设备),必须是运维人员提前准备好的。它们在不同节点上的挂载情况可以完全不同,甚至有的节点可以没这种磁盘。
- 所以,这时候,调度器就必须能够知道所有节点与 Local Persistent Volume 对应的磁盘的关联关系,然后根据这个信息来调度 Pod。
- 这个原则,我们可以称为“在调度的时候考虑 Volume 分布”。在 Kubernetes 的调度器里,有一个叫作 VolumeBindingChecker 的过滤条件专门负责这个事情。在 Kubernetes v1.11 中,这个过滤条件已经默认开启了。
存储插件实践
你知道的越多,你不知道的越多。