修改了原文段落100中关于score计算方式的理解。

对于厘清事件关系和符号定义有很大帮助。

001、一个非常简单的例子

假设现在有两枚硬币1和2,,随机抛掷后正面朝上概率分别为P1,P2。为了估计这两个概率,做实验,每次取一枚硬币,连掷5下,记录下结果,如下:

硬币

结果

统计

1

正正反正反

3正-2反

2

反反正正反

2正-3反

1

正反反反反

1正-4反

2

正反反正正

3正-2反

1

反正正反反

2正-3反

可以很容易地估计出P1和P2,如下:

P1 = (3+1+2)/ 15 = 0.4
P2= (2+3)/10 = 0.5

到这里,一切似乎很美好,下面我们加大难度。

010、加入隐变量z

还是上面的问题,现在我们抹去每轮投掷时使用的硬币标记,如下:

硬币

结果

统计

Unknown

正正反正反

3正-2反

Unknown

反反正正反

2正-3反

Unknown

正反反反反

1正-4反

Unknown

正反反正正

3正-2反

Unknown

反正正反反

2正-3反

好了,现在我们的目标没变,还是估计P1和P2,要怎么做呢?

显然,此时我们多了一个隐变量z,可以把它认为是一个5维的向量(z1,z2,z3,z4,z5),代表每次投掷时所使用的硬币,比如z1,就代表第一轮投掷时使用的硬币是1还是2。但是,这个变量z不知道,就无法去估计P1和P2,所以,我们必须先估计出z,然后才能进一步估计P1和P2。

但要估计z,我们又得知道P1和P2,这样我们才能用最大似然概率法则去估计z,这不是鸡生蛋和蛋生鸡的问题吗,如何破?

答案就是先随机初始化一个P1和P2,用它来估计z,然后基于z,还是按照最大似然概率法则去估计新的P1和P2,如果新的P1和P2和我们初始化的P1和P2一样,请问这说明了什么?(此处思考1分钟)

这说明我们初始化的P1和P2是一个相当靠谱的估计!

就是说,我们初始化的P1和P2,按照最大似然概率就可以估计出z,然后基于z,按照最大似然概率可以反过来估计出P1和P2,当与我们初始化的P1和P2一样时,说明是P1和P2很有可能就是真实的值。这里面包含了两个交互的最大似然估计。

如果新估计出来的P1和P2和我们初始化的值差别很大,怎么办呢?就是继续用新的P1和P2迭代,直至收敛。

这就是下面的EM初级版。

011、EM初级版

我们不妨这样,先随便给P1和P2赋一个值,比如:
P1 = 0.2
P2 = 0.7

然后,我们看看第一轮抛掷最可能是哪个硬币。
如果是硬币1,得出3正2反的概率为 0.2*0.2*0.2*0.8*0.8 = 0.00512
如果是硬币2,得出3正2反的概率为0.7*0.7*0.7*0.3*0.3=0.03087
然后依次求出其他4轮中的相应概率。做成表格如下:

轮数

若是硬币1

若是硬币2

1

0.00512

0.03087

2

0.02048

0.01323

3

0.08192

0.00567

4

0.00512

0.03087

5

0.02048

0.01323

按照最大似然法则:
第1轮中最有可能的是硬币2
第2轮中最有可能的是硬币1
第3轮中最有可能的是硬币1
第4轮中最有可能的是硬币2
第5轮中最有可能的是硬币1

我们就把上面的值作为z的估计值。然后按照最大似然概率法则来估计新的P1和P2。

P1 = (2+1+2)/15 = 0.33
P2=(3+3)/10 = 0.6

设想我们是全知的神,知道每轮抛掷时的硬币就是如本文第001部分标示的那样,那么,P1和P2的最大似然估计就是0.4和0.5(下文中将这两个值称为P1和P2的真实值)。那么对比下我们初始化的P1和P2和新估计出的P1和P2:

初始化的P1

估计出的P1

真实的P1

初始化的P2

估计出的P2

真实的P2

0.2

0.33

0.4

0.7

0.6

0.5

看到没?我们估计的P1和P2相比于它们的初始值,更接近它们的真实值了!

可以期待,我们继续按照上面的思路,用估计出的P1和P2再来估计z,再用z来估计新的P1和P2,反复迭代下去,就可以最终得到P1 = 0.4,P2=0.5,此时无论怎样迭代,P1和P2的值都会保持0.4和0.5不变,于是乎,我们就找到了P1和P2的最大似然估计。

这里有两个问题:
1、新估计出的P1和P2一定会更接近真实的P1和P2?
答案是:没错,一定会更接近真实的P1和P2,数学可以证明,但这超出了本文的主题,请参阅其他书籍或文章。
2、迭代一定会收敛到真实的P1和P2吗?
答案是:不一定,取决于P1和P2的初始化值,上面我们之所以能收敛到P1和P2,是因为我们幸运地找到了好的初始化值。

100、EM进阶版

下面,我们思考下,上面的方法还有没有改进的余地?

我们是用最大似然概率法则估计出的z值,然后再用z值按照最大似然概率法则估计新的P1和P2。也就是说,我们使用了一个最可能的z值,而不是所有可能的z值。

如果考虑所有可能的z值,对每一个z值都估计出一个新的P1和P2,将每一个z值概率大小作为权重,将所有新的P1和P2分别加权相加,这样的P1和P2应该会更好一些。

所有的z值有多少个呢?显然,有2^5=32种,需要我们进行32次估值??

不需要,我们可以用期望来简化运算。

轮数

若是硬币1

若是硬币2

1

0.00512

0.03087

2

0.02048

0.01323

3

0.08192

0.00567

4

0.00512

0.03087

5

0.02048

0.01323

利用上面这个表,我们可以算出每轮抛掷中使用硬币1或者使用硬币2的概率。比如第1轮,使用硬币1的概率是:
0.00512/(0.00512+0.03087)=0.14
使用硬币2的概率是1-0.14=0.86
依次可以算出其他4轮的概率,如下:

轮数

z_i=硬币1

z_i=硬币2

1

0.14

0.86

2

0.61

0.39

3

0.94

0.06

4

0.14

0.86

5

0.61

0.39

上表中的右两列表示期望值。看第一行,0.86表示,从期望的角度看,这轮抛掷使用硬币2的概率是0.86。相比于前面的方法,我们按照最大似然概率,直接将第1轮估计为用的硬币2,此时的我们更加谨慎,我们只说,有0.14的概率是硬币1,有0.86的概率是硬币2,不再是非此即彼。这样我们在估计P1或者P2时,就可以用上全部的数据,而不是部分的数据,显然这样会更好一些。

这一步,我们实际上是估计出了z的概率分布,这步被称作E步。

结合下表:

硬币

结果

统计

Unknown

正正反正反

3正-2反

Unknown

反反正正反

2正-3反

Unknown

正反反反反

1正-4反

Unknown

正反反正正

3正-2反

Unknown

反正正反反

2正-3反

我们按照期望最大似然概率的法则来估计新的P1和P2:

以P1估计为例,第1轮的3正2反相当于
0.14*3=0.42正
0.14*2=0.28反
依次算出其他四轮,列表如下:

轮数

正面

反面

1

0.42

0.28

2

1.22

1.83

3

0.94

3.76

4

0.42

0.28

5

1.22

1.83

总计

4.22

7.98

P1=4.22/(4.22+7.98)=0.35

关于这段为什么要这样算,我找了很多文章,提及期望的都使我薄弱的统计学功底瑟瑟发抖(推不出来)。后来我发现,不要以统计学的期望和概率来理解,而是理解为:P(A|X)是用到硬币A的概率,我们把用到A的概率作为一个权重,目的是为了能用到全部5轮的投掷结果,而不是仅仅像011中只能用到2轮结果。对每一轮投出的结果,P(A|X)小的就对重新计算θ起到的贡献小,P(A|X)大的就对重新计算θ起到的贡献大。

可以想见,如果我们不引入权重,但又非要用到5轮结果,会出现什么情况?

θA = (3+2+1+3+2)/25 

这显然是不对的,因为第一轮用到A硬币的概率非常低只有0.14,这个3正2反的结果很可能根本不是A硬币掷出来的,怎么能把它和第二轮同等地位的用在计算结果中呢。

所以我们用概率P(A|X)对它进行加权,以降低它在计算中的地位。

可以理解为:第一轮投掷用A硬币投出的结果为,0.42正,0.28反。

可以看到,改变了z值的估计方法后,新估计出的P1要更加接近0.4。原因就是我们使用了所有抛掷的数据,而不是之前只使用了部分的数据。

这步中,我们根据E步中求出的z的概率分布,依据最大似然概率法则去估计P1和P2,被称作M步。

101、总结

变量定义:

每次观测(Observation)索引                          =>  i

当前θ参数条件                                            =>  (θA,θB)

每次观测,如H-T-T-T-H                              =>  x(i)

挑选的硬币(Coin A, Coin B)                   =>  z(i)

求解: (θA,θB)。已知观测值 x(i),i∈[1,5]。显然 z(i)为隐变量。

① 任意给(θA,θB) = P1,P2

② 根据贝叶斯定理可以计算出 P(Z|X=x(i)),i∈[1,5]

③ 将P(Z|X=x(i)),i∈[1,5]作为权重加入观测值x(i),此时可根据极大似然估计重新计算(θA,θB)。(看作50次的伯努利分布而非5次的二项分布)

④ 重复以上三步进行迭代