一、时间序列数据
对同一对象在不同时间连续观察所取得的数据
二、时间序列基本概念
时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。
时间序列由两个组成要素构成:
1、第一个要素是时间要素;
年、季度、月、周、日、小时、分钟、秒
2、第二个要素是数值要素。
时间序列根据时间和数值性质的不同,可以分为时期时间
序列和时点时间序列。
时期序列中,数值要素反映现象在一定时期内发展的结果;
时点序列中,数值要素反映现象在一定时点上的瞬间水平。
区分时期和时点序列:
例如:
(1)从出生到现在,你的体重的数据(每年生日称一次)。 (2)中国历年来GDP的数据。
(3)在某地方每隔一小时测得的温度数据。
(1)和(3)是时点时间序列;(2)是时期时间序列
时期序列可加,时点序列不可加。
时期序列中的观测值反映现象在一段时期内发展过程的总量,不同时期的观测值可以相加,相加结果表明现象在更长一段时间内的活动总
量; 而时点序列中的观测值反映现象在某一瞬间上所达到的水平,不同时期的观测值不能相加,相加结果没有实际意义。
(灰色预测模型里面有一个累加的过程)
三、时间序列分解
因为时间序列是某个指标数值长期变化的数值表现,所以时间序列数值变化背后必然蕴含着数值变换的规律性,这些规律性就是时间序列分析的切入点。
一般情况下,时间序列的数值变化规律有以下四种:
长期变动趋势,季节变动规律,周期变动规律,不规则变动(随机扰动项)
1.长期趋势:T
长期趋势(Secular trend,T)指的是统计指标在相当长的一段时间内,受到长期趋势影响因素的影响,表现出持续上升或持续下降的趋势,通常用字母T表示。例如,随着国家经济的发展,人均收入将逐渐提升;随着医学水平的提高,新生儿死亡率在不断下降。
2.季节趋势:S
季节趋势(Seasonal Variation,S)是指由于季节的转变使得指标数值发生周期性变动。这里的季节是广义的,一般以月、季、周为时间单位,不能以年作单位。例如雪糕和棉衣的销量都会随着季节气温的变化而周期变化;每年的长假(五一、十一、春节)都会引起出行人数的大量增加。
百度指数:http://index.baidu.com/v2/index.html#/
3.循环变动趋势:C
循环变动(Cyclical Variation,C)与季节变动的周期不同,循环变动通常以若干年为周期,在曲线图上表现为波浪式的周期变动。这种周期变动的特征表现为增加和减少交替出现,但是并不具严格规则的周期性连续变动。最典型的周期案例就是市场经济的商业周期和的整个国家的经济周期
4.不规则变动:I
不规则变动(Irregular Variation,I)是由某些随机因素导致的数值变化,这些因素的作用是不可预知和没有规律性的,可以视为由于众多偶然因素对时间序列造成的影响(在回归中又被称为扰动项)。
以上四种变动就是时间序列数值变化的分解结果。有时这些变动会同时出现在一个时间序列里面,有时也可能只出现一种或几种,这是由引起各种变动的影响因素决定的。正是由于变动组合的不确定性,时间序列的数值变化才那么千变万化。
四种变动与指标数值最终变动的关系可能是叠加关系,也可能是乘积关系。
5.叠加模型和乘积模型
Y:指标数值的最终变动
T:长期趋势变动
S:季节变动
C:循环变动
I:不规则变动
(1)如果四种变动之间是相互独立的关系,那么叠加模型可以表示为:
(2)如果四种变动之间存在相互影响关系,那么应该使用乘积模型:
(1)数据具有年内的周期性时才能使用时间序列分解,例如数据是月份数据(周期为12)、季度数据(周期为4) ,如果是年份数据则不行。
(2)在具体的时间序列图上,如果随着时间的推移,序列的季节波动变得越来越大,则反映各种变动之间的关系发生变化,建议使用乘积模型;反之,如果时间序列图的波动保持恒定,则可以直接使用叠加模型;当然,如果不存在季节波动,则两种分解均可以。
例如:
四、SPSS处理时间序列中的缺失值
1.替换缺失值的五种方法
1.缺失值发生在时间序列的开头或者尾部,可采用直接删除的方法;
2.缺失值发生在序列的中间位置,则不能删除(删除后原有的时间序列会错位),可采用替换缺失值的方法。
五种方法:
1.序列平均值:用整个序列的平均数代替缺失值
2.临近点的平均值:用相邻若干个点的平均数来替换缺失值(默认为两个点)
3.临近点的中位数:用相邻若干个点的中位数来替换缺失值(默认为两个点)
4.线性插值:用相邻两个点的平均数来替换缺失值
5.邻近点的线性趋势:将时期数作为x,时间序列值作为y进行回归,求缺失点的预测值
五、SPSS软件定义时间变量
六、时间序列图(时序图)
列表,作图后都要做一定的解释
七、季节性分解
八、画出分解后的时序图
时间序列分解图作出后建立时序分析模型 (指数平滑、ARIMA)
九、建立时间序列分析模型