总览
- Window 是flink处理无限流的核心,Windows将流拆分为有限大小的“桶”,我们可以在其上应用计算。
- Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理。
- 而窗口(window)就是从 Streaming 到 Batch 的一个桥梁。
- Flink 提供了非常完善的窗口机制。
- 在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理。
- 当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页。
- 在这种情况下,我们必须定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算。
- 窗口可以是基于时间驱动的(Time Window,例如:每30秒钟)
- 也可以是基于数据驱动的(Count Window,例如:每一百个元素)
- 同时基于不同事件驱动的窗口又可以分成以下几类:
- 翻滚窗口 (Tumbling Window, 无重叠)
- 滑动窗口 (Sliding Window, 有重叠)
- 会话窗口 (Session Window, 活动间隙)
- 全局窗口 (略)
- Flink要操作窗口,先得将StreamSource 转成WindowedStream
Window操作 | 其作用 |
Window Keyed Streaming → WindowedStream | 可以在已经分区的KeyedStream上定义Windows,即K,V格式的数据。 |
WindowAll DataStream → AllWindowedStream | 对常规的DataStream上定义Window,即非K,V格式的数据 |
Window Apply WindowedStream → AllWindowedStream AllWindowedStream → DataStream | 将函数应用于整个窗口中的数据 |
Window Reduce WindowedStream → DataStream | 对窗口里的数据进行”reduce”减少聚合统计 |
Aggregations on windows WindowedStream → DataStream | 对窗口里的数据进行聚合操作: sum(), max(), min() |
Tumbling Window(翻滚窗口)
- 翻滚窗口能将数据流切分成不重叠的窗口,每一个事件只能属于一个窗口
- 翻滚窗具有固定的尺寸,不重叠。
- 例图:
- 代码
package com.ronnie.flink.stream.window;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import java.text.SimpleDateFormat;
import java.util.Random;
/**
* 翻滚窗口:窗口不可重叠
* 1、基于时间驱动
* 2、基于事件驱动
*/
public class TumblingWindow {
public static void main(String[] args) {
//设置执行环境,类似spark中初始化sparkContext
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> dataStreamSource = env.socketTextStream("ronnie01", 9999);
SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = dataStreamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
long timeMillis = System.currentTimeMillis();
int random = new Random().nextInt(10);
System.out.println("value: " + value + " random: " + random + "timestamp: " + timeMillis + "|" + format.format(timeMillis));
return new Tuple2<String, Integer>(value, random);
}
});
KeyedStream<Tuple2<String, Integer>, Tuple> keyedStream = mapStream.keyBy(0);
// 基于时间驱动,每隔10s划分一个窗口
WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> timeWindow = keyedStream.timeWindow(Time.seconds(10));
// 基于事件驱动, 每相隔3个事件(即三个相同key的数据), 划分一个窗口进行计算
// WindowedStream<Tuple2<String, Integer>, Tuple, GlobalWindow> countWindow = keyedStream.countWindow(3);
// apply是窗口的应用函数,即apply里的函数将应用在此窗口的数据上。
timeWindow.apply(new MyTimeWindowFunction()).print();
// countWindow.apply(new MyCountWindowFunction()).print();
try {
// 转换算子都是lazy init的, 最后要显式调用 执行程序
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}
- 基于时间驱动
- 场景1:我们需要统计每一分钟中用户购买的商品的总数,需要将用户的行为事件按每一分钟进行切分,这种切分被成为翻滚时间窗口(Tumbling Time Window)。
package com.shsxt.flink.stream.window;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.text.SimpleDateFormat;
public class MyTimeWindowFunction implements WindowFunction<Tuple2<String,Integer>, String, Tuple, TimeWindow> {
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<String> out) throws Exception {
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
int sum = 0;
for(Tuple2<String,Integer> tuple2 : input){
sum +=tuple2.f1;
}
long start = window.getStart();
long end = window.getEnd();
out.collect("key:" + tuple.getField(0) + " value: " + sum + "| window_start :"
+ format.format(start) + " window_end :" + format.format(end)
);
}
}
- 基于事件驱动
- 场景2:当我们想要每100个用户的购买行为作为驱动,那么每当窗口中填满100个”相同”元素了,就会对窗口进行计算。
package com.ronnie.flink.stream.window;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;
import org.apache.flink.util.Collector;
import java.text.SimpleDateFormat;
public class MyCountWindowFunction implements WindowFunction<Tuple2<String, Integer>, String, Tuple, GlobalWindow> {
@Override
public void apply(Tuple tuple, GlobalWindow window, Iterable<Tuple2<String, Integer>> input, Collector<String> out) throws Exception {
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
int sum = 0;
for (Tuple2<String, Integer> tuple2 : input){
sum += tuple2.f1;
}
//无用的时间戳,默认值为: Long.MAX_VALUE,因为基于事件计数的情况下,不关心时间。
long maxTimestamp = window.maxTimestamp();
out.collect("key:" + tuple.getField(0) + " value: " + sum + "| maxTimeStamp :"
+ maxTimestamp + "," + format.format(maxTimestamp)
);
}
}
Sliding Window(滑动窗口)
- 滑动窗口和翻滚窗口类似,区别在于:滑动窗口可以有重叠的部分。
- 在滑窗中,一个元素可以对应多个窗口。
- 例图:
- 基于时间的滑动窗口
- 场景: 我们可以每30秒计算一次最近一分钟用户购买的商品总数。
- 基于事件的滑动窗口
- 场景: 每10个 “相同”元素计算一次最近100个元素的总和.
- 代码:
package com.ronnie.flink.stream.window;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import java.text.SimpleDateFormat;
import java.util.Random;
/**
* 滑动窗口:窗口可重叠
* 1、基于时间驱动
* 2、基于事件驱动
*/
public class SlidingWindow {
public static void main(String[] args) {
// 设置执行环境, 类似spark中初始化SparkContext
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> dataStreamSource = env.socketTextStream("ronnie01", 9999);
SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = dataStreamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
long timeMillis = System.currentTimeMillis();
int random = new Random().nextInt(10);
System.err.println("value : " + value + " random : " + random + " timestamp : " + timeMillis + "|" + format.format(timeMillis));
return new Tuple2<String, Integer>(value, random);
}
});
KeyedStream<Tuple2<String, Integer>, Tuple> keyedStream = mapStream.keyBy(0);
//基于时间驱动,每隔5s计算一下最近10s的数据
// WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> timeWindow = keyedStream.timeWindow(Time.seconds(10), Time.seconds(5));
//基于事件驱动,每隔2个事件,触发一次计算,本次窗口的大小为3,代表窗口里的每种事件最多为3个
WindowedStream<Tuple2<String, Integer>, Tuple, GlobalWindow> countWindow = keyedStream.countWindow(3, 2);
// timeWindow.sum(1).print();
countWindow.sum(1).print();
// timeWindow.apply(new MyTimeWindowFunction()).print();
try {
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}
Session Window(会话窗口)
- 会话窗口不重叠,没有固定的开始和结束时间
- 与翻滚窗口和滑动窗口相反, 当会话窗口在一段时间内没有接收到元素时会关闭会话窗口。
- 后续的元素将会被分配给新的会话窗口
- 例图:
- 举例:
- 计算每个用户在活跃期间总共购买的商品数量,如果用户30秒没有活动则视为会话断开。
- 代码:
package com.ronnie.flink.stream.window;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import java.text.SimpleDateFormat;
import java.util.Random;
public class SessionWindow {
public static void main(String[] args) {
// 设置执行环境, 类似spark中初始化sparkContext
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> dataStreamSource = env.socketTextStream("ronnie01", 9999);
SingleOutputStreamOperator<Tuple2<String, Integer>> mapStream = dataStreamSource.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
long timeMillis = System.currentTimeMillis();
int random = new Random().nextInt(10);
System.err.println("value : " + value + " random : " + random + " timestamp : " + timeMillis + "|" + format.format(timeMillis));
return new Tuple2<String, Integer>(value, random);
}
});
KeyedStream<Tuple2<String, Integer>, Tuple> keyedStream = mapStream.keyBy(0);
//如果连续10s内,没有数据进来,则会话窗口断开。
WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> window = keyedStream.window(ProcessingTimeSessionWindows.withGap(Time.seconds(10)));
// window.sum(1).print();
window.apply(new MyTimeWindowFunction()).print();
try {
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}