写在前面

        本题来自于哈工大自动化专业大四课程数字图像处理的实验1,需要自己编写程序实现OpenCV中求解单应性矩阵的函数findHomography以及实现单应性变换的函数warpPerspective。本文包含整个工程的全部源码,仅供学习交流使用。

2022.04.22补充:

为了防止通篇照搬,且出于对老师的尊重,数学推导全部省略,代码故意设置了一些bug,直接跑是跑不通的,请各位耗子尾汁。

为了防止通篇照搬,且出于对老师的尊重,数学推导全部省略,代码故意设置了一些bug,直接跑是跑不通的,请各位耗子尾汁。

为了防止通篇照搬,且出于对老师的尊重,数学推导全部省略,代码故意设置了一些bug,直接跑是跑不通的,请各位耗子尾汁。

欢迎在本文档的基础上学习,如果能够调通程序则说明你已经掌握了这部分的原理,也就不需要我给出数学推导过程了。

1. 文档结构及相关说明

opencv retinex 红外图像处理 opencv homography_像素点

        输入图片为src.jpg(待校正图像,待校正目标的四对点需要使用Photoshop等软件预提取)和dst.jpg(利用扫描全能王等得到的校正后的图像,用于提供校正后的图像尺寸),如下所示:


opencv retinex 红外图像处理 opencv homography_opencv_02

src.jpg

opencv retinex 红外图像处理 opencv homography_像素点_03

dst.jpg

输出结果见以下帖子(直接调用OpenCV现成函数findHomography和warpPerspective): 

2. 代码实现

myfindHomography.hpp

#ifndef _MYFINDHOMOGRAPHY_HPP_
#define _MYFINDHOMOGRAPHY_HPP_

using namespace std;
using namespace cv;
using namespace Eigen;

enum H_param {MethodInverse, MethodSVD};

//根据4对点求解单应性矩阵
Mat myfindHomography(vector<Point2f> srcPoints, vector<Point2f> dstPoints, H_param flag)
{
	vector<Point2f> src=srcPoints;
	vector<Point2f> dst=dstPoints;
	Point2f src1 = src[0], src2 = src[1], src3 = src[2], src4 = src[3];
	Point2f dst1 = dst[0], dst2 = dst[1], dst3 = dst[2], dst4 = dst[3];
	//输入点(x, y); 
	double x1 = (double)src1.x, x2 = (double)src2.x, x3 = (double)src3.x, x4 = (double)src4.x;
	double y1 = (double)src1.y, y2 = (double)src2.y, y3 = (double)src3.y, y4 = (double)src4.y;
	//输出点(u, v)
	double u1 = (double)dst1.x, u2 = (double)dst2.x, u3 = (double)dst3.x, u4 = (double)dst4.x;
	double v1 = (double)dst1.y, v2 = (double)dst2.y, v3 = (double)dst3.y, v4 = (double)dst4.y;
	
	//--方法1:利用矩阵求逆的方法求解--
	if(flag == MethodInverse) 
	{
		cout << "Inverse Matrix Method" << endl;
		Mat M = (Mat_<double>(8, 8) << 	-x1, y1, -1,   0,   0,  0, u1*x1, u1*y1,
										0,   0,  0, -x1, -y1, 1, v1*x1, v1*y1,
										-x2, y2, -1,   0,   0,  0, u2*x2, u2*y2,
										0,   0,  0, -x2, -y2, 1, v2*x2, v2*y2,
										-x3, y3, -1,   0,   0,  0, u3*x3, u3*y3,
										0,   0,  0, -x3, -y3, 1, v3*x3, v3*y3,
										-x4, y4, -1,   0,   0,  0, u4*x4, u4*y4,
										0,   0,  0, -x4, -y4, 1, v4*x4, v4*y4);
		Mat B = (Mat_<double>(8, 1)<< 	-u1, v1, -u2, -v2, -u3, -v3, -u4, -v4);
		Mat M_inv = M.inv();
		Mat H0 = M_inv*B;
		double H11 = H0.at<double>(0,0);
		double H12 = H0.at<double>(1,0);
		double H13 = H0.at<double>(2,0);
		double H21 = H0.at<double>(3,0);
		double H22 = H0.at<double>(4,0);
		double H23 = H0.at<double>(5,0);
		double H31 = H0.at<double>(6,0);
		double H32 = H0.at<double>(7,0);
		double H33 = 1.0;
		Mat H = (Mat_<double>(3, 3)<< H11, H12, H13, H21, H22, H23, H31, H32, H33);
		return H;
	}
	else if(flag == MethodSVD) 
	{
		//--方法2:利用SVD奇异值分解的方法求解--
		cout << "SVD Method" << endl;
		MatrixXd A(8, 9);
		A 	<< 	-x1, y1, -1,   0,   0,  0, u1*x1, u1*y1, u1,
				0,   0,  0, -x1, -y1, 1, v1*x1, v1*y1, v1,
				-x2, y2, -1,   0,   0,  0, u2*x2, u2*y2, u2,
				0,   0,  0, -x2, -y2, 1, v2*x2, v2*y2, v2,
				-x3, y3, -1,   0,   0,  0, u3*x3, u3*y3, u3,
				0,   0,  0, -x3, -y3, 1, v3*x3, v3*y3, v3,
				-x4, y4, -1,   0,   0,  0, u4*x4, u4*y4, u4,
				0,   0,  0, -x4, -y4, 1, v4*x4, v4*y4, v4;
		
		//求解Full SVD
		JacobiSVD<MatrixXd> svd(A, ComputeFullV);
		MatrixXd V; 
		V = svd.matrixV();

		//所需要求解的H11-H33即为V矩阵的最后一列(证明见报告)
		double H11 = V(0,8) / V(8,8);
		double H12 = V(1,8) / V(8,8);
		double H13 = V(2,8) / V(8,8);
		double H21 = V(3,8) / V(8,8);
		double H22 = V(4,8) / V(8,8);
		double H23 = V(5,8) / V(8,8);
		double H31 = V(6,8) / V(8,8);
		double H32 = V(7,8) / V(8,8);
		double H33 = 1.0;
		Mat H = (Mat_<double>(3,3)<< H11, H12, H13, H21, H22, H23, H31, H32, H33);
		return H;
	}
	else
	{
		return Mat();
	}
	
}

#endif

mywarpPerspective.hpp

#ifndef _MYWARPPERSPECTIVE_HPP_
#define _MYWARPPERSPECTIVE_HPP_

#include "myremap.hpp"

//using namespace std;
using namespace cv;

//利用求解出的单应性矩阵进行单应性变换
void mywarpPerspective(Mat src, Mat &dst, Mat H, Size size) 
{
   	//创建原图的四个顶点的3*4矩阵(此处我的顺序为左上,右上,左下,右下)
	Mat tmp = (Mat_<double>(3, 4) <<    0,  src.cols,   0,          src.cols, 
									    0,  0,          src.rows,   src.rows,
									    1,  1,          1,          1);

   	//获得原图四个顶点变换后的坐标,计算变换后的图像尺寸
    Mat corner = H * tmp;

   	//创建向前映射矩阵 map_x, map_y
	dst.create(size, src.type());
    Mat map_x(dst.size(), CV_32FC1);
    Mat map_y(dst.size(), CV_32FC1);
    Mat point_src(3, 1, CV_32FC1, 1);
    Mat point_dst(3, 1, CV_32FC1, 1);
	//H的类型为CV_64FC1,point_dst的类型CV_32FC1
	//本句是为了令H与point_dst同类型(同类型才可以相乘,否则报错)
    H.convertTo(H, point_dst.type());  
   	Mat H_inv = H.inv(); 

    //根据输出点及单应性逆矩阵来寻找输出点在输入图像中对应的坐标,以确保每个输出点都有值
    //输出图像的行数与列数由dst.jpg决定
    //此处输出图像的第一个点一定是(0, 0),即输出像素点中的左上点  
    for (int i = 0; i < dst.rows; i++) 
	{        
        for (int j = 0; j < dst.cols; j++) 
		{
            point_dst.at<float>(0) = j;
            point_dst.at<float>(1) = i;
            point_src = H_inv * point_dst;
            //齐次坐标转换为像素坐标
            map_x.at<float>(i, j) = point_src.at<float>(0) / point_src.at<float>(2);
            map_y.at<float>(i, j) = point_src.at<float>(1) / point_src.at<float>(2);
        }
    }
	myremap(src,dst,map_x,map_y);
}

#endif

myremap.hpp

#ifndef _MYREMAP_HPP_
#define _MYREMAP_HPP_

using namespace cv;

//通过输出像素点与输入像素点的对应关系矩阵,来应用几何变换
//map_x为二维矩阵,代表该位置上的输出像素点对应的输入像素点的x坐标
//map_y为二维矩阵,代表该位置上的输出像素点对应的输入像素点的y坐标
void myremap(Mat src, Mat &dst, Mat map_x, Mat map_y)
{
	//在浮点数表示的颜色空间中,数值范围是0-1.0
	//imshow的时候会把图像x255后再显示
	//因此需要在转换的时候设置scale factor=1/255以归一化
	src.convertTo(src, CV_32F,1/255.0); 
	dst.convertTo(dst, CV_32F,1/255.0);
	
	//输入图像是彩色图像,需要分离通道再单独处理
	vector<Mat> src_planes;
	vector<Mat> dst_planes;
	split(src,src_planes);
	split(dst,dst_planes);

	for (int i = 0; i < dst.rows; i++) 
	{        
        for (int j = 0; j < dst.cols; j++) 
		{
			//应用几何变换,插值方式选择最近邻法
			//利用成员函数at取值时,会自动将坐标转换成int类型,因此相当于最近邻法插值
			dst_planes[0].at<float>(i, j)=src_planes[0].at<float>(map_y.at<float>(i, j),map_x.at<float>(i, j));
			dst_planes[1].at<float>(i, j)=src_planes[1].at<float>(map_y.at<float>(i, j),map_x.at<float>(i, j));
			dst_planes[2].at<float>(i, j)=src_planes[2].at<float>(map_y.at<float>(i, j),map_x.at<float>(i, j));
		}
	}
	//合并通道
	Mat plane[] = {dst_planes[0], dst_planes[1], dst_planes[2]};
	merge(plane, 3, dst);
}

#endif

getMSE.hpp 

#ifndef _GETMSE_HPP_
#define _GETMSE_HPP_

using namespace std;
using namespace cv;

//得到均方误差MSE
double getMSE(Mat & srcImage,Mat & dstImage)
{
	Mat src = dstImage;
	Mat dst = srcImage;
	int rowsNumber = src.rows;
	int colsNumber = src.cols;
	double mse=0.0;
	for (int i = 0; i < rowsNumber; i++)
	{
		for (int j = 0; j < colsNumber; j++)
		{
			mse += (src.ptr<double>(i)[j] - dst.ptr<double>(i)[j])*(src.ptr<double>(i)[j] - dst.ptr<double>(i)[j]);
		}
	}
	mse = mse / (rowsNumber*colsNumber);
	return mse;
}

#endif

myResize.hpp 

#ifndef _MYRESIZE_HPP_
#define _MYRESIZE_HPP_

using namespace cv;

//调整图片大小
void myResize(Mat &srcImage, double ratio)
{
	float scaleW = ratio;
    float scaleH = ratio;
    int width = int(srcImage.cols * scaleW);
    int height = int(srcImage.rows * scaleH);
	resize(srcImage, srcImage, Size(width, height));
}

#endif

test.hpp

#ifndef _TEST_HPP_
#define _TEST_HPP_

#include "myfindHomography.hpp"
#include "mywarpPerspective.hpp"

using namespace std;
using namespace cv;

//直接调用OpenCV库函数,用于效果对比
Mat Test_findHomography_warpPerspective(vector<Point2f> srcPoints, vector<Point2f> dstPoints, Mat im_src, Mat im_dst)
{
	Mat H, im_out;
	//求解单应性矩阵
	H = findHomography(srcPoints,dstPoints);
	cout<< "Homography matrix  calculated by findHomography:"<<endl;
	cout<< H << endl;

	// --根据计算出来的单应性矩阵H,对图像进行透视变换--
	// 确定输出图像的尺寸
	Size size=im_dst.size();
	//应用单应性变换
	warpPerspective(im_src, im_out, H, size);
	
	//将输出图片按0.2的比例缩小
	myResize(im_out, 0.2);
	imshow("单应性变换后的图像-warpPerspective", im_out);

	return H;
}

//利用自己编写的函数求解单应性矩阵及应用单应性变换
Mat Test_myfindHomography_mywarpPerspective(vector<Point2f> srcPoints, vector<Point2f> dstPoints, Mat im_src, Mat im_dst)
{
	Mat H, im_out;
	//求解单应性矩阵
	//myfindHomography第三个参数
	//MethodInverse->矩阵求逆法
	//MethodSVD->SVD奇异值分解法
	H = myfindHomography(srcPoints,dstPoints,MethodSVD);
	cout<< "Homography matrix calculated by myfindHomography:"<<endl;
	cout<< H << endl;

	// --根据计算出来的单应性矩阵H,对图像进行透视变换--
	// 确定输出图像的尺寸
	Size size=im_dst.size();
	//应用单应性变换
	mywarpPerspective(im_src, im_out, H, size);
	
	//将输出图片按0.2的比例缩小
	myResize(im_out, 0.2);
	imshow("单应性变换后的图像-mywarpPerspective", im_out);

	return H;
}

#endif

main.cpp 

#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>
#include <eigen3/Eigen/Dense>

#include "myResize.hpp"
#include "test.hpp"
#include "myfindHomography.hpp"
#include "mywarpPerspective.hpp"
#include "myremap.hpp"
#include "getMSE.hpp"

int main()
{
	//--读取图片--
	Mat im_src,im_dst,im_out;
	//待变换的图片
	im_src=imread("../../image/src.jpg");
	//利用图像校正软件预校正后的图片,用于确认输出图像的Size
	im_dst=imread("../../image/dst.jpg");

	//--根据待变换的图片和预校正后的图片的四对点(左上,右上,左下,右下)来计算单应性矩阵--
	//待变换的图片(利用Photoshop预先获取四个点的坐标)
	vector<Point2f> pts_src{Point2f(889,1032),Point2f(2471,1079),Point2f(276,2868),Point2f(2829,2979)};
	//预校正后的图片(图片大小2070×2500)
	vector<Point2f> pts_dst{Point2f(0,0),Point2f(2069,0),Point2f(0,2499),Point2f(2069,2499)};
	
	//利用自己编写的函数求解单应性矩阵及应用单应性变换
	Mat myH = Test_myfindHomography_mywarpPerspective(pts_src, pts_dst, im_src, im_dst);
	//直接调用OpenCV库函数,用于效果对比
	Mat H = Test_findHomography_warpPerspective(pts_src, pts_dst, im_src, im_dst);
	
	//计算均方误差
	double MSE = getMSE(myH, H);
	cout << "MSE: " << MSE << endl;

	//将图片缩小至0.12倍,便于查看
	myResize(im_src, 0.12);
	imshow("待变换的图片",im_src);
	
	waitKey();
	destroyAllWindows();
	return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(Experiment1)
add_subdirectory(src)

src/CMakeLists.txt

set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++11")

set(EXECUTABLE_OUTPUT_PATH ${PROJECT_BINARY_DIR}/bin)

find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

find_package(Eigen3 REQUIRED)
include_directories(${EIGEN3_INCLUDE_DIRS})

include_directories(${PROJECT_SOURCE_DIR}/include)
add_executable(Experiment1 main.cpp)

target_link_libraries(Experiment1 ${OpenCV_LIBS})