目录

  • 1 假设检验的基本思想
  • 2 假设检验的基本原理
  • 3 假设检验中可能犯的错误
  • 4 假设检验的基本步骤
  • 4.1 第一步:提出假设
  • 4.2 第二步:确定理论的显著性水平
  • 4.3 第三步:计算用于检验的统计量
  • 4.4 第四步:根据统计量对应的P值进行判断假设
  • 5 假设检验中总体的集中不同情况


1 假设检验的基本思想

举例理解,如检验"小明是一个从来不做坏事的好人"

按照这个假设前提,小明不会干坏事或干坏事的几率是非常小的,但是只有有一个人发现他干坏事,说明事情的假设是不可靠的,就可以否定这个说法。当然这个结论是不确定的,是有犯错的概率的。

2 假设检验的基本原理

基本原理就是观测小概率时间在假设成立的情况下是否发生,如果再一次试验中小概率事件发生了,说明该假设在一定的显著性水平下不可靠或不成立,从而否定假设

如果一次试验中小概率事件没有发生,只能说明没有足够理由相信假设是否错误,但是不能说明假设是正确的,因为在现有的条件下无法手机所有的证据去证明它是正确的。

3 假设检验中可能犯的错误

假设检验的结论是在一定的显著性水平下得出的,当我们去观测事件并下结论的时候,是有可能犯错误的。在假设检验过程中,无法不保证不犯错误,这些错误归纳为两类

  • 第一类错误:当假设为真的时候,却否定它而犯的错误,即拒绝正确假设的错误,也叫弃真错误。犯第一类错误的概率记为python进行假设检验 python 假设检验_python进行假设检验,所以通常叫做python进行假设检验 python 假设检验_python进行假设检验错误,python进行假设检验 python 假设检验_python进行假设检验= 1-置信度
  • 第二类错误:当假设为假时却肯定它而犯的错误,即接受错误假设的错误,也叫纳伪错误,犯第二类错误的概率记为python进行假设检验 python 假设检验_数据分析_04,所以通常也叫做python进行假设检验 python 假设检验_python进行假设检验错误。

两类错误在其他条件不变的情况下,是相反想成的,即python进行假设检验 python 假设检验_python进行假设检验_06增大时,python进行假设检验 python 假设检验_python_07减小;python进行假设检验 python 假设检验_python进行假设检验_06减小时,python进行假设检验 python 假设检验_python_07增大。想要同时减小两类错误,只能增加样本量。

在Python数据分析中,python进行假设检验 python 假设检验_python进行假设检验_06称为理论的显著性水平,P称为实际的显著性水平,P值也具体指在记性检验过程汇总实际犯第一类错误的概率

当P值比python进行假设检验 python 假设检验_python进行假设检验_06小:说明实际计算的显著性水平比理论的显著性水平更小,小概率时间在一次试验中发生的几率更小。在P值的显著性水平条件下,如果还能观测到小概率时间发生,则说明假设更加不可靠,可以对架设做出否定的判断。

当P值比python进行假设检验 python 假设检验_python进行假设检验_06大:在P值的显著性水平下,如果能够观测得到小概率事件发生,说明假设可能没有任何问题,因为本来观测一个概率比较大的时间,起发生的可能本来就比较大,不能对假设做出否定的判断。

总之,在Python中进行假设检验,P值越小越能否定原假设。

4 假设检验的基本步骤

4.1 第一步:提出假设

假设就是对总体特征的一个特定描述。假设分为原假设和备择假设

原假设(零假设):通常情况下把想要搜集证据去否定的结论作为原假设。

备择假设(研究假设):通常情况下爱把想要搜集证据去支持的结论作为备择假设。当备择假设含有python进行假设检验 python 假设检验_数据分析_13时,称为双侧或双尾检验;当备择假设汇总含有<或>时称为单侧或单尾检验。

4.2 第二步:确定理论的显著性水平

理论的显著性水平python进行假设检验 python 假设检验_python进行假设检验_06,通常情况下取0.05、0.1\或0.001等等常用数值。

4.3 第三步:计算用于检验的统计量

根据一直条件和总体分布情况,在原假设成立的情况下,选择计算用于检验的统计量。

python进行假设检验 python 假设检验_数据分析_15

其中python进行假设检验 python 假设检验_假设检验_16表示总体标准差;python进行假设检验 python 假设检验_数据分析_17表示样本容量,python进行假设检验 python 假设检验_假设检验_18表示成对样本的个数;python进行假设检验 python 假设检验_数据分析_19、p、python进行假设检验 python 假设检验_基本步骤_20分别表示样本均值、样本比例和样本方差;python进行假设检验 python 假设检验_python进行假设检验_21表示成对样本的两组变量值之差;python进行假设检验 python 假设检验_基本步骤_22python进行假设检验 python 假设检验_数据分析_23python进行假设检验 python 假设检验_数据分析_24表示原假设成立时的总体均值、总体比例和总体方差。

4.4 第四步:根据统计量对应的P值进行判断假设

python中工具检验函数,可以直接计算出P值,如果Ppython进行假设检验 python 假设检验_数据分析_25 python进行假设检验 python 假设检验_python进行假设检验_06,说明在显著性水平python进行假设检验 python 假设检验_python进行假设检验_06条件下,原假设不成立,拒绝原假设,选择备择假设;如果P>python进行假设检验 python 假设检验_python进行假设检验_06,说明在显著性水平条件下,没有充分证据表明我们应当拒绝假设。

如果没有指定python进行假设检验 python 假设检验_python进行假设检验_06的值,则P值越小越显著。

5 假设检验中总体的集中不同情况

在统计推断之前,应该根据总体的不同分布情况,选择不同统计量形式,检验所用统计量的形式和步骤取决于所抽取样本的样本量大小,无论大样本还是小样本。

(1)大样本的检验方法

样本来量大于30的称为大样本。以总体均值的假设检验为例,在大样本的情况下,根据重心极限定理,均值的抽样分布服从正态分布,所以可以使用正态统计量(Z统计量)进行假设检验。

(2)小样本的检验方法

样本量小于30的称为小样本,对于小样本的情况分为两种。当总体方差已知时,仍然使用正态统计量。当总体方差未知时,则使用t统计量,t统计量服从自由度为(n-1)的t分布。