前不久,Flink社区发布了FLink 1.9版本,在其中包含了一个很重要的新特性,即state processor api,这个框架支持对checkpoint和savepoint进行操作,包括读取、变更、写入等等。
savepoint的可操作带来了很多的可能性:
- 作业迁移
1.跨类型作业,假如有一个storm作业,将状态缓存在外部系统,希望更好的利用flink的状态机制来增加作业的稳定和减少数据的延迟,但如果直接迁移,必然面临状态的丢失,这时,可以将外部系统的状态转换为flink作业的savepoint来启动。
2.同类型作业,假如有一个flink作业已经在运行,一个新的flink作业希望复用之前的某些状态,也可以将savepoint进行处理重新写入,进而使得新的flink作业可以在某个基础上运行。
- 作业升级
1.有UID升级,一般情况下,如果升级前的operator已经设置了uid,那么可以直接升级,但是如果希望在之前的状态数据上做些变更,这里就提供了一种接口。
2.无UID升级,在特殊情况下,一开始编写了没有UID的作业,后来改成了标准的有UID的作业,反而无法在之前的savepoint上启动了,这时也可以对savepoint同时做升级。
- 作业校验
1.异步校验,一般而言,flink作业的最终结果都会持久化输出,但在面临问题的时候,如何确定哪一级出现问题,state processor api也提供了一种可能,去检验state中的数据是否与预期的一致。
- 作业扩展
1.横向扩展,如果在flink作业一开始运行的时候,因为面对的数据量较小,设置了比较小的最大并行度,但在数据量增大的时候,却没办法从老的savepoint以一个比之前的最大并行度更大的并行度来启动作业,这时,也需要复写savepoint的同时更改最大并行度。
2.纵向扩展,在flink作业中新添加了一个operator,从savepoint启动的时候这个operator默认无状态,可以手动构造数据,使得这个operator的表现和其他operator保持一致。
可以对savepoint进行哪些操作?
- 读取savepoint
1.验证,读取出来的savepoint会转换为一个dataSet,随后可以以标准批处理的方式来验证你的业务预期;
2.source,也可以以savepoint作为数据源,来作为你另一个作业的输入。
- 写入savepoint
1.写入新的savepoint,可以写入一个全新的savepoint,这个savepoint是独立的存在,他可以有新的operator uid,新的operator state,以及新的max parallism等等。
2.复用原来的savepoint,可以在原来的savepoint的基础上加入新的operator的state,在新的savepoint被使用之前,老的savepoint不允许被删除。
那么究竟哪些state是可读的?有哪些接口了?
可以看到,主要提供对三种state的访问,operator state和broadcast state,其中broadcast state是一种特殊的operator state,因为他也支持自定义的serializer。
通关程序
目前在社区或者网上并没有完整的样例供大家参考,下面这个例子是完全在测试环境中跑通的,所有的flink相关组件的版本依赖都是1.9.0。
下面我们说明如何使用这个框架。
1.首先我们创建一个样例作业来生成savepoint
主类代码
1 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
2 env.enableCheckpointing(60*1000);
3 DataStream<Tuple2<Integer,Integer>> kafkaDataStream =
4 env.addSource(new SourceFunction<Tuple2<Integer,Integer>>() {
5 private boolean running = true;
6 private int key;
7 private int value;
8 private Random random = new Random();
9 @Override
10 public void run(SourceContext<Tuple2<Integer,Integer>> sourceContext) throws Exception {
11 while (running){
12 key = random.nextInt(5);
13 sourceContext.collect(new Tuple2<>(key,value++) );
14 Thread.sleep(100);
15 }
16 }
17
18 @Override
19 public void cancel() {
20 running = false;
21 }
22 }).name("source").uid("source");
23
24
25 kafkaDataStream
26 .keyBy(tuple -> tuple.f0)
27 .map(new StateTest.StateMap()).name("map").uid("map")
28 .print().name("print").uid("print");
在上面的代码中,只需要注意在自定义的source中,发送tuple2消息,而做savepoint的
关键在于状态,状态在StateMap这个类中,如下:
1 public static class StateMap extends RichMapFunction<Tuple2<Integer,Integer>,String> {
2 private transient ListState<Integer> listState;
3
4 @Override
5 public void open(Configuration parameters) throws Exception {
6 ListStateDescriptor<Integer> lsd =
7 new ListStateDescriptor<>("list",TypeInformation.of(Integer.class));
8 listState = getRuntimeContext().getListState(lsd);
9 }
10
11 @Override
12 public String map(Tuple2<Integer,Integer> value) throws Exception {
13 listState.add(value.f1);
14 return value.f0+"-"+value.f1;
15 }
16
17 @Override
18 public void close() throws Exception {
19 listState.clear();
20 }
21 }
在上面的Map中,首先在open中声明了一个ListState,然后在消息处理的逻辑中,也很简单的只是把tuple2的值放进了listState中。然后提交作业,等作业运行一段时间之后,触发一个savepoint,
并记录savepoint的地址。至此,完成了state processor api验证工作的数据准备。
2.利用state processor api读取savepoint
这一步只是简单验证下savepoint是否能够被正确读取,代码如下:
1 public class ReadListState {
2 protected static final Logger logger = LoggerFactory.getLogger(ReadListState.class);
3
4 public static void main(String[] args) throws Exception {
5 final String operatorUid = "map";
6 final String savepointPath =
7 "hdfs://xxx/savepoint-41b05d-d517cafb61ba";
8
9 final String checkpointPath = "hdfs://xxx/checkpoints";
10
11 // set up the batch execution environment
12 final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
13
14 RocksDBStateBackend db = new RocksDBStateBackend(checkpointPath);
15 DataSet<String> dataSet = Savepoint
16 .load(env, savepointPath, db)
17 .readKeyedState(operatorUid, new ReaderFunction())
18 .flatMap(new FlatMapFunction<KeyedListState, String>() {
19 @Override
20 public void flatMap(KeyedListState keyedListState, Collector<String> collector) throws Exception {
21 keyedListState.value.forEach(new Consumer<Integer>() {
22 @Override
23 public void accept(Integer integer) {
24 collector.collect(keyedListState.key + "-" + integer);
25 }
26 });
27 }
28 });
29
30 dataSet.writeAsText("hdfs://xxx/test/savepoint/bravo");
31
32 // execute program
33 env.execute("read the list state");
34 }
35
36 static class KeyedListState {
37 Integer key;
38 List<Integer> value;
39 }
40
41 static class ReaderFunction extends KeyedStateReaderFunction<Integer, KeyedListState> {
42 private transient ListState<Integer> listState;
43
44 @Override
45 public void open(Configuration parameters) {
46 ListStateDescriptor<Integer> lsd =
47 new ListStateDescriptor<>("list", TypeInformation.of(Integer.class));
48 listState = getRuntimeContext().getListState(lsd);
49 }
50
51 @Override
52 public void readKey(
53 Integer key,
54 Context ctx,
55 Collector<KeyedListState> out) throws Exception {
56 List<Integer> li = new ArrayList<>();
57 listState.get().forEach(new Consumer<Integer>() {
58 @Override
59 public void accept(Integer integer) {
60 li.add(integer);
61 }
62 });
63
64 KeyedListState kl = new KeyedListState();
65 kl.key = key;
66 kl.value = li;
67
68 out.collect(kl);
69 }
70 }
71 }
在读取了savepoint中的状态之后,成功将其转存为一个文件,文件的部分内容如下,每行的内容分别为key-value对:
3.利用state processor api重写savepoint
savepoint是对程序某个运行时点的状态的固化,方便程序在再次提交的时候进行接续,但有时候需要对savepoint中的状态进行改写,以方便从特定的状态来启动作业。
1 public class ReorganizeListState {
2 protected static final Logger logger = LoggerFactory.getLogger(ReorganizeListState.class);
3 public static void main(String[] args) throws Exception {
4 final String operatorUid = "map";
5 final String savepointPath =
6 "hdfs://xxx/savepoint-41b05d-d517cafb61ba";
7
8 final String checkpointPath = "hdfs://xxx/checkpoints";
9
10 // set up the batch execution environment
11 final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
12
13 RocksDBStateBackend db = new RocksDBStateBackend(checkpointPath);
14 DataSet<KeyedListState> dataSet = Savepoint
15 .load(env,savepointPath,db)
16 .readKeyedState(operatorUid,new ReaderFunction())
17 .flatMap(new FlatMapFunction<KeyedListState, KeyedListState>() {
18 @Override
19 public void flatMap(KeyedListState keyedListState, Collector<KeyedListState> collector) throws Exception {
20 KeyedListState newState = new KeyedListState();
21 newState.value = keyedListState.value.stream()
22 .map( x -> x+10000).collect(Collectors.toList());
23 newState.key = keyedListState.key;
24 collector.collect(newState);
25 }
26 });
27
28 BootstrapTransformation<KeyedListState> transformation = OperatorTransformation
29 .bootstrapWith(dataSet)
30 .keyBy(acc -> acc.key)
31 .transform(new KeyedListStateBootstrapper());
32
33 Savepoint.create(db,128)
34 .withOperator(operatorUid,transformation)
35 .write("hdfs://xxx/test/savepoint/");
36
37 // execute program
38 env.execute("read the list state");
39 }
40
41 static class KeyedListState{
42 Integer key;
43 List<Integer> value;
44 }
45
46 static class ReaderFunction extends KeyedStateReaderFunction<Integer, KeyedListState> {
47 private transient ListState<Integer> listState;
48
49 @Override
50 public void open(Configuration parameters) {
51 ListStateDescriptor<Integer> lsd =
52 new ListStateDescriptor<>("list",TypeInformation.of(Integer.class));
53 listState = getRuntimeContext().getListState(lsd);
54 }
55
56 @Override
57 public void readKey(
58 Integer key,
59 Context ctx,
60 Collector<KeyedListState> out) throws Exception {
61 List<Integer> li = new ArrayList<>();
62 listState.get().forEach(new Consumer<Integer>() {
63 @Override
64 public void accept(Integer integer) {
65 li.add(integer);
66 }
67 });
68
69 KeyedListState kl = new KeyedListState();
70 kl.key = key;
71 kl.value = li;
72
73 out.collect(kl);
74 }
75 }
76
77 static class KeyedListStateBootstrapper extends KeyedStateBootstrapFunction<Integer, KeyedListState> {
78 private transient ListState<Integer> listState;
79
80 @Override
81 public void open(Configuration parameters) {
82 ListStateDescriptor<Integer> lsd =
83 new ListStateDescriptor<>("list",TypeInformation.of(Integer.class));
84 listState = getRuntimeContext().getListState(lsd);
85 }
86
87 @Override
88 public void processElement(KeyedListState value, Context ctx) throws Exception {
89 listState.addAll(value.value);
90 }
91 }
92 }
这里的关键在于根据上一步读取出来dataSet,转换的过程中将其值全部累加10000,然后将这个dataSet作为输入来构建一个BootstrapTransformation,然后创建了一个空的savepoint,并把指定
operatorUid的状态写为一个savepoint,最终写入成功,得到了一个新的savepoint,这个新的savepoint包含的状态中的value相比原先的值发生了变化。
4.验证新生产的savepoint是否可用
由于验证用的state是ListState,换言之,是KeyedState,而KeyedState是属于Flink托管的state,意味着Flink自己掌握状态的保存和恢复的逻辑,所以为了验证作业是否正确从新的savepoint
中启动了,对之前的StateMap改写如下:
1 public static class StateMap extends RichMapFunction<Tuple2<Integer,Integer>,String> {
2 private transient ListState<Integer> listState;
3
4 @Override
5 public void open(Configuration parameters) throws Exception {
6 ListStateDescriptor<Integer> lsd =
7 new ListStateDescriptor<>("list",TypeInformation.of(Integer.class));
8 listState = getRuntimeContext().getListState(lsd);
9 }
10
11 @Override
12 public String map(Tuple2<Integer,Integer> value) throws Exception {
13 listState.add(value.f1);
14 log.info("get value:{}-{}",value.f0,value.f1);
15 StringBuilder sb = new StringBuilder();
16 listState.get().forEach(new Consumer<Integer>() {
17 @Override
18 public void accept(Integer integer) {
19 sb.append(integer).append(";");
20 }
21 });
22 log.info("***********************taskNameAndSubTask:{},restored value:{}"
23 ,getRuntimeContext().getTaskNameWithSubtasks(),sb.toString());
24 return value.f0+"-"+value.f1;
25 }
26
27 @Override
28 public void close() throws Exception {
29 listState.clear();
30 }
31 }
由于无法在state恢复之后立刻就拿到相应恢复的数据,这里之后在每次消息达到的时候输出下state中的内容,变通的看看是否恢复成功,结果如下:
可以对比看下上图中key为4的输出,可以看到输出的值即为修改后的值,验证成功。
5.结语
上面我们以一个keyedState来对state processor api做了验证,但Flink的state分为KeyedState,OperatorState和BroadcastState,在state processor api中都提供相应的处理接口。
另外,对于keyedState,如果作业的并行度发生了变化会如何?如果Key发生了变化会如何?都需要进一步探究。