一、示例代码

管道功能就是REDIS的批量发送,类似于一个命令批处理的功能,相当于把多个请求的命令放在一个数据包通过TCP发送到服务端,然后客户端再一次性读取所有的命令回应,节省多次命令的网络请求。

RBatch rBatch = redissonClient.createBatch();
        RBatch rBatch = redissonClient.createBatch();
        rBatch.getBucket("goodsName", StringCodec.INSTANCE).getAsync();
        rBatch.getSet("goodsSet",StringCodec.INSTANCE).readAllAsync();
        BatchResult<?> res = rBatch.execute();
        log.debug(" tt execute end. res:{}",JSONUtil.toJsonStr(res.getResponses()));

二、创建批处理和添加命令流程

     1.创建批处理对象,包括批量命令执行器,并且创建的RBucket等各种REDIS容器对象都会传入批量命令执行器。

public class RedissonBatch implements RBatch {

    private final EvictionScheduler evictionScheduler;
    private final CommandBatchService executorService;
    private final BatchOptions options;

    public RedissonBatch(EvictionScheduler evictionScheduler, ConnectionManager connectionManager, BatchOptions options) {
        this.executorService = new CommandBatchService(connectionManager, options);
        this.evictionScheduler = evictionScheduler;
        this.options = options;
    }

    @Override
    public <V> RBucketAsync<V> getBucket(String name) {
        return new RedissonBucket<V>(executorService, name);
    }

redis 批处理 pipeline redisson批量查询_redis 批处理 pipeline

redis 批处理 pipeline redisson批量查询_java_02

批量命令执行器继承于通用命令执行器(CommandAsyncService) ,只是重写了发送命令函数(SendCommand,async(异步发送命令)).

2.rBatch.getBucket("goodsName").getAsync()调用批量命令执行器的异步发送命令。

CommandBatchService
@Override
    public <V, R> void async(boolean readOnlyMode, NodeSource nodeSource,
            Codec codec, RedisCommand<V> command, Object[] params, RPromise<R> mainPromise, boolean ignoreRedirect) {
        if (isRedisBasedQueue()) {
            boolean isReadOnly = options.getExecutionMode() == ExecutionMode.REDIS_READ_ATOMIC;
            RedisExecutor<V, R> executor = new RedisQueuedBatchExecutor<>(isReadOnly, nodeSource, codec, command, params, mainPromise,
                    false, connectionManager, objectBuilder, commands, connections, options, index, executed, latch);
            executor.execute();
        } else {
            RedisExecutor<V, R> executor = new RedisBatchExecutor<>(readOnlyMode, nodeSource, codec, command, params, mainPromise, 
                    false, connectionManager, objectBuilder, commands, options, index, executed);
            executor.execute();
        }
        
    }

3.接着调用了RedisBatchExecutor.execute方法,


和BaseRedisBatchExecutor.addBatchCommandData


public class RedisBatchExecutor<V, R> extends BaseRedisBatchExecutor<V, R> {
    
    @Override
    public void execute() {
        addBatchCommandData(params);
    }
    
}

public class BaseRedisBatchExecutor<V, R> extends RedisExecutor<V, R> {

    final ConcurrentMap<MasterSlaveEntry, Entry> commands;
    final BatchOptions options;
    final AtomicInteger index;
    
    final AtomicBoolean executed;
    
    
    protected final void addBatchCommandData(Object[] batchParams) {
        MasterSlaveEntry msEntry = getEntry(source);
        Entry entry = commands.get(msEntry);
        if (entry == null) {
            entry = new Entry();
            Entry oldEntry = commands.putIfAbsent(msEntry, entry);
            if (oldEntry != null) {
                entry = oldEntry;
            }
        }

        if (!readOnlyMode) {
            entry.setReadOnlyMode(false);
        }

        Codec codecToUse = getCodec(codec);
        BatchCommandData<V, R> commandData = new BatchCommandData<V, R>(mainPromise, codecToUse, command, batchParams, index.incrementAndGet());
        entry.getCommands().add(commandData);
    }

redis 批处理 pipeline redisson批量查询_数据结构_03

 这里的commands为以主节点为KEY,以待发送命令队列列表为VALUE(Entry),保存一个MAP.然后会把命令都添加到entry的commands命令队列中。

public static class Entry {

        Deque<BatchCommandData<?, ?>> commands = new LinkedBlockingDeque<>();
        volatile boolean readOnlyMode = true;

redis 批处理 pipeline redisson批量查询_redis 批处理 pipeline_04

 三、批量执行命令

1.调用rBatch.executeAsync(),接着会调用到CommandBatchService.executeAsync

CommandBatchService
 public RFuture<BatchResult<?>> executeAsync() {
         
        AtomicInteger slots = new AtomicInteger(commands.size());

        for (Map.Entry<RFuture<?>, List<CommandBatchService>> entry : nestedServices.entrySet()) {
            slots.incrementAndGet();
            for (CommandBatchService service : entry.getValue()) {
                service.executeAsync();
            }
            
            entry.getKey().onComplete((res, e) -> {
                handle(voidPromise, slots, entry.getKey());
            });
        }
        
        for (Map.Entry<MasterSlaveEntry, Entry> e : commands.entrySet()) {
            RedisCommonBatchExecutor executor = new RedisCommonBatchExecutor(new NodeSource(e.getKey()), voidPromise,
                                                    connectionManager, this.options, e.getValue(), slots);
            executor.execute();
        }
        return promise;
    }

redis 批处理 pipeline redisson批量查询_数据库_05

 2.接着跳到RedisCommonBatchExecutor.execute方法,这个调用了基类RedisExecutor的execute方法,

RedisExecutor   
public void execute() {


        codec = getCodec(codec);
        
        RFuture<RedisConnection> connectionFuture = getConnection();

        RPromise<R> attemptPromise = new RedissonPromise<R>();
        mainPromiseListener = (r, e) -> {
            if (mainPromise.isCancelled() && connectionFuture.cancel(false)) {
                log.debug("Connection obtaining canceled for {}", command);
                timeout.cancel();
                if (attemptPromise.cancel(false)) {
                    free();
                }
            }
        };
        
        if (attempt == 0) {
            mainPromise.onComplete((r, e) -> {
                if (this.mainPromiseListener != null) {
                    this.mainPromiseListener.accept(r, e);
                }
            });
        }

        scheduleRetryTimeout(connectionFuture, attemptPromise);

        connectionFuture.onComplete((connection, e) -> {
            if (connectionFuture.isCancelled()) {
                connectionManager.getShutdownLatch().release();
                return;
            }

            if (!connectionFuture.isSuccess()) {
                connectionManager.getShutdownLatch().release();
                exception = convertException(connectionFuture);
                return;
            }

            sendCommand(attemptPromise, connection);

            writeFuture.addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    checkWriteFuture(writeFuture, attemptPromise, connection);
                }
            });

            releaseConnection(attemptPromise, connectionFuture);
        });

        attemptPromise.onComplete((r, e) -> {
            checkAttemptPromise(attemptPromise, connectionFuture);
        });
    }

redis 批处理 pipeline redisson批量查询_java_06

 3.接着调用到RedisCommonBatchExecutor.sendCommand方法,进行命令发送。

@Override
    protected void sendCommand(RPromise<Void> attemptPromise, RedisConnection connection) {
        boolean isAtomic = options.getExecutionMode() != ExecutionMode.IN_MEMORY;
        List<CommandData<?, ?>> list = new ArrayList<>(entry.getCommands().size());
        for (CommandData<?, ?> c : entry.getCommands()) {
            if ((c.getPromise().isCancelled() || c.getPromise().isSuccess()) 
                    && !isWaitCommand(c) 
                        && !isAtomic) {
                // skip command
                continue;
            }
            list.add(c);
        }
        
        writeFuture = connection.send(new CommandsData(attemptPromise, list, options.isSkipResult(), isAtomic, isQueued, options.getSyncSlaves() > 0));
    }

redis 批处理 pipeline redisson批量查询_redis 批处理 pipeline_07

 注意这里的CommandsData里面的命令是一个列表,可以支持多个。

public class CommandsData implements QueueCommand {

    private final List<CommandData<?, ?>> commands;
    private final List<CommandData<?, ?>> attachedCommands;

    public CommandsData(RPromise<Void> promise, List<CommandData<?, ?>> commands, boolean queued, boolean syncSlaves) {
        this(promise, commands, null, false, false, queued, syncSlaves);
    }
    
    public CommandsData(RPromise<Void> promise, List<CommandData<?, ?>> commands, boolean skipResult, boolean atomic, boolean queued, boolean syncSlaves) {
        this(promise, commands, null, skipResult, atomic, queued, syncSlaves);
    }

4.接着会调用RedisConnection.send方法来发送数据,其实是调用netty中生成的NioSocketChannel来写入命令数据。

RedisConnection
public ChannelFuture send(CommandsData data) {
    return channel.writeAndFlush(data);
}

5.netty的channel的writeAndFlush会调用管道中所有的outHandler进行处理。那在这里就是


CommandEncoder,CommandBatchEncoder,这里首先会调用到CommandBatchEncoder的encode方法


CommandBatchEncoder    
@Override
    protected void encode(ChannelHandlerContext ctx, CommandsData msg, ByteBuf out) throws Exception {
        CommandEncoder encoder = ctx.pipeline().get(CommandEncoder.class);
        for (CommandData<?, ?> commandData : msg.getCommands()) {
            encoder.encode(ctx, commandData, out);
        }
    }

这里面就是循环取出命令,逐个调用CommandEncoder单个命令编码器进行编码,最后再加到out列表中,一个网络包发送出去。

redis 批处理 pipeline redisson批量查询_数据结构_08

redis 批处理 pipeline redisson批量查询_数据结构_09

 这里就是对两个命令编码的过程,接着就是调用socket.write将命令数据发送到服务端。

四、接收命令回应。

1.这个是接收的结果为一次性接收到的网络数据,格式为REDIS的协议。

2021-11-19 10:14:08.418 tt TRACE 28472 --- [sson-netty-2-23]   o.r.c.h.CommandDecoder.decode(CommandDecoder.java:114) : reply: $5
xdwww
*2
$4
word
$5
hello

2.接收回调处理,CommandDecoder.decode,在handleResult中会通知结果。

protected void decode(ByteBuf in, CommandData<Object, Object> data, List<Object> parts, Channel channel, boolean skipConvertor, List<CommandData<?, ?>> commandsData) throws IOException {
        int code = in.readByte();
        if (code == '+') {
            String result = readString(in);

            handleResult(data, parts, result, skipConvertor);
        } else if (code == '$') {
            ByteBuf buf = readBytes(in);
            Object result = null;
            if (buf != null) {
                Decoder<Object> decoder = selectDecoder(data, parts);
                result = decoder.decode(buf, state());
            }
            handleResult(data, parts, result, false);
        } else if (code == '*') {
            long size = readLong(in);
            List<Object> respParts = new ArrayList<Object>(Math.max((int) size, 0));
            
            state().incLevel();
            
            decodeList(in, data, parts, channel, size, respParts, skipConvertor, commandsData);
            
            state().decLevel();
            
        } else {
            String dataStr = in.toString(0, in.writerIndex(), CharsetUtil.UTF_8);
            throw new IllegalStateException("Can't decode replay: " + dataStr);
        }
    }

redis 批处理 pipeline redisson批量查询_List_10

 3.handleResult

private void handleResult(CommandData<Object, Object> data, List<Object> parts, Object result, boolean skipConvertor) {
        if (data != null && !skipConvertor) {
            result = data.getCommand().getConvertor().convert(result);
        }
        if (parts != null) {
            parts.add(result);
        } else {
            completeResponse(data, result);
        }
    }

redis 批处理 pipeline redisson批量查询_数据结构_11

 4.解码列表。

private void decodeList(ByteBuf in, CommandData<Object, Object> data, List<Object> parts,
            Channel channel, long size, List<Object> respParts, boolean skipConvertor, List<CommandData<?, ?>> commandsData)
                    throws IOException {
        if (parts == null && commandsData != null) {
            for (int i = respParts.size(); i < size; i++) {
                int suffix = 0;
                if (RedisCommands.MULTI.getName().equals(commandsData.get(0).getCommand().getName())) {
                    suffix = 1;
                }
                CommandData<Object, Object> commandData = (CommandData<Object, Object>) commandsData.get(i+suffix);
                decode(in, commandData, respParts, channel, skipConvertor, commandsData);
                if (commandData.getPromise().isDone() && !commandData.getPromise().isSuccess()) {
                    data.tryFailure(commandData.cause());
                }
            }
        } else {
            for (int i = respParts.size(); i < size; i++) {
                decode(in, data, respParts, channel, skipConvertor, null);
            }
        }

        MultiDecoder<Object> decoder = messageDecoder(data, respParts);
        if (decoder == null) {
            return;
        }

        Object result = decoder.decode(respParts, state());
        decodeResult(data, parts, channel, result);
    }

redis 批处理 pipeline redisson批量查询_redis 批处理 pipeline_12

5.设置commandData的等待PROMISE的结果值。

redis 批处理 pipeline redisson批量查询_java_13

protected void completeResponse(CommandData<Object, Object> data, Object result) {
        if (data != null) {
            data.getPromise().trySuccess(result);
        }
    }

    private void handleResult(CommandData<Object, Object> data, List<Object> parts, Object result, boolean skipConvertor) {
        if (data != null && !skipConvertor) {
            result = data.getCommand().getConvertor().convert(result);
        }
        if (parts != null) {
            parts.add(result);
        } else {
            completeResponse(data, result);
        }
    }