(1)初识遗传算法
论的自然选择和遗传学机理的生物进化过程的计算模型,一种选择不断选择优良个体的算法。谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个体基本上是最优的,那么以后再继续这样下去就可以一直最优了。
(2)解决的问题
先说说自己要解决的问题吧。遗传算法很有名,自然能解决的问题很多了,在原理上不变的情况下,只要改变模型的应用环境和形式,基本上都可以。但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。
本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化。函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:
怎么样,还是有点复杂的吧,当然你还可以任意假设和编写,只要符合就可以。那么现在问你要你一下求出最大值你能求出来吗?(这个貌似可以,很容易看出来---如何再复杂一点估计就不行了)这类问题如果用遗传算法或者其他优化方法就很简单了,为什么了,说白了,其实就是计算机太笨,同时计算速度又超快,举个例子吧,我把x等分为100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小找到最大值不久可以了么,很笨吧,人算是不可能的,但是计算机可以。而遗传算法也是很笨的一个个搜索,只不过加了一点什么了,就是人为的给它算的方向与策略,让它有目的的算,这也就是算法了。扯多了,正题吧。。。
(3)如何开始
20-100之间我感觉差不多了。那么个体究竟是什么了?在我们这个问题中,自然就是x值了,其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选了100个不同的x值,不明白的话就假设是100个猴子吧。好了现在有了100个猴子组成的一个种群,那么这个种群该怎么发展才能越来越好了?说到这,我们想想,如何去定义这个越来越好呢?这该有个评价指标吧,在我们这个题中,好像是对于的y值越大越好是吧,也就是说哪些x对应的y值越大,我们就认为这个x越好,对于不同的x值,在把他们的y值确定后,我们甚至可以给他们排个名来决定哪些好些。我们把这个叫做对于个体的适应度,这应该算是算法的后半部分才对。
(4)编码
首先明白什么是编码?为什么要编码?如何编码?
x)换一个形式而已,在这个形式下,更容易操作其他过程(比如交叉、变异什么的)而已。举个例子吧,假如我们取x=1,2,3,我可以把x编码成x=a,b,c,我就说123对应的就是abc,为什么要这样做呢,比如问题里面你能够获取的都是abc组合之类的,那么这样编码以后,你就可以再返回去成123来操作了。一般的编码都有些什么了?二进制编码,自然数编码,矩阵编码。。很多,不详写了。而用的最多的可以说是二进制编码吧,感觉这和人体DNA、基因的排列很相似,想想DNA怎么排的?不就是在两条长链上一对一排的吗?那么什么是二进制编码?很简单,就是1、0、1、0对应的来回组合排列而已。比如:1100100010, 0011001001 等等,这些都是位数长度为10的二进制编码。再想想1在计算机的二进制形式是多少?如果以八位来表示的话,是不是就是:0000 0001 ;8是不是就是0000 1000;以此类推,那么我们这里也是这样,把对应的x值换算成这种编码形式,我们这里可以看到x的范围是0~5吧,如何照计算机这样的方式,是不是到0000 0101 这里就完事了?想想这样多短,前面五位都没有用上多浪费呀,那么要想都用上怎么办了?也很简单,我们把0000 0001 不认为是1不就可以了吗?因为1111 1111 为255,那么如果说每一份为1/255的话,那么0000 0001不就是1/255(不是1了,比1小很多了),这个时候1怎样表示了?不就是:1111 1111了。好了我们把范围扩大一些吧,每一份不是1/255, 而是1/255*5,那么这个时候最大值是多少?是不是5,恩,这样x编码的范围不就在0~5之间了吗。这里就又有问题了,想想这样的话x最小精度为多少?就是1/255*5,虽然很小,但是在0~1/255*5之间的x你能不能取到?无论如何都不能吧,那么就又来了一个问题,怎样去增大这个精度呢?如果要保持0~5不变的话,只能增加位数了,把8位编码变成10位,20位,100位,哇,够大了吧,变成了100个0、1组合,很恐怖吧,事实上究竟是多少要视情况来定,一般20左右感觉就可以了,虽然说越大越好,但是太大了耗内存呀,速度慢了,不值。本题中,我们设置它为一个变量,先暂时取为10来实验。好了,如果还不明白为什么要编码看下面的吧,知道了交叉与变异,你就知道了。
(5)关于交叉与变异
10位长度的编码来说,比如把x=3编码一下,随便假设为11000 10010吧,好了在变异操作时,假设第5位变异了(说一下变异就是对应一位或者多位0或1变成1或0,也只能在0,1之间变,没办法呀),那么这个时候变成什么了?是不是为11001 10010(把前面的认为低位,和计算机里面的不一样了,自己定义而已吧),好了现在看看现在11001 10010 再反编码回去成x是多少呢?那肯定不是3了,变了呀,是多少肯定可以反算回去了,这里懒得算了,就假设为3.213吧,发没发现,这样一来,x是不是变了?既然变了就好呀,带到原函数(适应度函数)里面去比较这两个x值对应的那个y值大一些,如何后面变异后的大些是不是就是说产生了好的变异呀,就可以在下一次个体选择的时候选择它了。那么想想很多x来一起变异会怎么样了?肯定会生成很多好的解吧,反复这样做又会怎么样了?只要每次都保留最优解的话,我来循环个100万次,也总能找到最优解吧,当然这么多次得花多久,也不合适。这还只是一个点位在进行变异,如果每次我让多个点位变异呢?哇,又不可思议了,变化更大了吧。当然,变异不止如此,更多的去看专业论文吧,知道了变异是干什么的,剩下的都好说了吧。好了,这还只是变异,想想自然界遗传中除了变异还有什么,交叉吧,那么交叉又是什么了?
学过生物的都知道,动物交配时,部分染色体干什么了,是不是交叉了?就是把相应部分的基因交换了,你的给了我,我的给了你,很有爱吧。再以编码为例吧,比如现在随便从100个x值中选取两个吧,假设正好选中了x=3和4,对应的编码假设是:11001 10101和00101 01011,那么怎么交叉呢?我们知道每次交叉的染色体通常是不是一块一块的?恩,这里在算法设计上也来一块一块的吧,比如说就把位置在2,3,4号的编码给整体交叉了吧,那么x=3对应位置是100吧,x=4对应位置是010吧,好,交换以后x=3对应位置就变成了010,而x=4就变成了100,加回去就变成了什么了?X=3是不是就为10101 10101,x=4是不是就为01001 01011了。而现在,把他们再反编码回去还是x=3,4吗?显然又不是了吧(当然也有概率是一样的吧,很小)。那是什么了?不想算,还是假设吧,假设为3.234,和4.358把,好了新的个体是不是又来了?恩,同理,带到适应度函数里面去吧,在取优秀个体,完事。同样,有些专门研究这种算法的开发出来各种各样的交叉方式,什么一个个体的前3个与后一个个体的后3个交叉,中间几位来交叉等等,总之就是生产新个体,而这样做的目的在哪了?无非是三个字,随机性,充分保证生产新个体具有随机性,你说你的x=3变异后为3.2,3.1什么的距离3那么近,在一些存在局部最优解问题上就永远跳不出局部最优解,相反,你的x=1一下子变异成了x=5,哇,好大的变化呀,一下从这头到了那头,这对于算法的广阔搜索能力来说是非常好的。
讲完了这部分,现在知道了为什么要编码了吧?如果你不编码,你说你想要你的x=3怎么去变异,怎么去交叉?当然也不是没有方法,比如你生成一个小的随机数加到x=3上,但是你想想这两种方法哪一个更具有随机性、普遍性?显然的。而更多的时候交叉与变异是在一起操作的,先交叉,再变异(或者反过来)是普遍遗传算法的操作步骤。
(6)关于选择的问题
gg了是吧。所以才有了人类这种高级动物。不停的选择使得种群一直朝着较好的方向行走。
100个x,第二次就200个,再来那么10万次循环,哇哦,多少了,好多。显然不可能吧,而且在算法里面,我们还规定的是每次循环都必须保证都是100个个体,那么必须在200个个体中剔除100个吧,好了,问题来了,如何剔除呢?有人说很简单,排名吧,取前100号x不久可以了吗?排名这个东西真的准吗?我就不信,凭什么差一点的不能选上,搞不好在下一次变异中一下子冲到了第一呢?这个问题在选择上也有一些对应的规则,最通用的就是轮盘赌法,简单来说就是一种概率选择法(当然还有许多其他的方法,感兴趣自己搜相关的文献吧,我也没用过)。什么是轮盘赌法呢?就是把对应所有y值(适应度函数值)加起来,再用各自的y值去除以这个sum值,这样是不是谁的概率大谁的概率小就很清楚了?然后再随机生成一个0~1的概率值p,谁在p的范围里面是不是就选择谁,比如说x=3时在100个x中y的值最大,那么选择它的概率是不是就最大,比如说是0.1(0.1小吗?不小了好吧,想想其他的会是什么,都比0.1小,那么从概率上讲,选100次的话,是不是就有10次选到了x=3,其他的都不足10次是吧,那么在下一次100个种群个体中就有10个x=3了,再来一回可能就有20个x=3了,再就是30个,最最后就只剩下100个x=3,它自己在那里交叉变异是不是已经没什么意义了,如果到了这个时候就意味着这个算法可以结束了)。再详细点,如下图所示吧:现在要在下面三个大类中先去100个x个体,轮盘赌转100次以后,是不是个体数落在s3中的个体多一些,选择的原理就是这样,再不明白直接后面的程序吧,我曾经也研究了好久。。。
(7)还差点什么呢
10次看一下结果,20次,30次,100次,当次数达到一定程度以后,优秀的个体越来越多,大都集中在最优解附近,即使变异或者交叉了也是在这个最优解附近,没有影响的,在下一次选择后就有变回来了。那么至此就真的结束了。比如说先来结果吧,该问题按我这个思路做完后,迭代100次变成什么样子了?上图如下:
100个)都集中在了x=0.286附近是吧,也就是基本上达到最优解了。
具体程序以及解释,下回合再来吧。