作者:丁点helper
重复测量方差分析与我们之前学习的各种方差分析(单变量,对于因变量而言)的区别主要在于“重复”二字。
之前的方差分析是对一个变量的变异进行分解(即所谓的离均差平方和);重复测量的方差分析则是针对多个变量进行的,也可以叫做变异分解,但此时它有了一个新名字,叫方差-协方差矩阵的变异分解。
什么叫协方差?什么又叫矩阵?
简单说说,协方差就是两个变量之间相关关系的度量,学习过相关分析的同学可能熟悉点儿,相关系数就是通过协方差计算出来的。
正是因为出现了多个因变量、所以才会需要研究相关(即协方差),而也因为相关,其就不能使用一般的方差分析,因为破坏了独立性假设。
而对于矩阵,它是高等数学-线性代数中最基本的概念,暂时就把它看做一个一个数的方阵。
出现这么多新的概念,就是因为,现在我们分析的因变量不再是一个,而是多个,所以,重复测量的方差分析,也可以看做是多元方差分析(多个因变量)。
实际上,SPSS也是这样操作的,大家听过的“球形检验”,就是用来判断需不要看多元方差分析的结果,下面我们通过一个案例来具体讲讲。
案例:某研究者通过动物实验来探究海水淹溺后残留于肺内的海水是否会导致肺损伤。将12只杂种犬随机分为两组,每组6只,一组用海水灌注右肺,另一组海水灌注全肺。每只犬分别在海水灌注前、灌注后5min、30min、60min、120min检测氧分压。
具体的数据如下表
这是一个典型的可以使用重复测量方差分析的数据,而且稍显复杂的是,这里进行了分组:灌注右肺(用“1”表示)和灌注全肺(用“2”表示)。
还记得我们之前讲协方差分析的时候强调的内容吗?分析数据前,首先找到X、Y、Z,即自变量、因变量、协变量。
本案例中自变量是分组变量(右肺VS全肺),因变量是氧分压,没有协变量。
不过,我们昨天说过,重复测量的方差分析很重要的一点是检验“时间效应”,即不同的时间点测量的数据是否有差异。
所以,在这里,也可以把时间效应看做一个特殊的自变量,而且它有一个专门的名字,叫within-Subject Factor,一般直译为“受试者内因素”。
SPSS中进行重复测量方差分析的具体操作可以参考,之后我们也考虑录制专门的视频进行讲解。
做过重复测量的同学可能知道,SPSS会输出很多结果,让人眼花缭乱,所以到底应该怎么看这些结果呢?
下面这张图给我们做了一个梳理,推荐给大家:
由上图可知,对于SPSS给出的一系列结果,大家应该首先找到“球形检验”的结果(Mauchly's Test of Sphericity):
球形检验结果,该例不满足球形假设(P小于0.05)
如果球形检验的P值(sig)大于0.05,称作数据满足球形假设,此时可直接看一元方差分析的结果(Tests of With-in Subjects Effects),而且是看第一行(Sphericity Assumed),根据其P值(sig)判断时间效应(time)、以及时间和分组的交互效应(time*group)。
如果球形检验的P值(sig)小于0.05,则称数据不满足球形假设,此时就需要结合多元方差分析和一元方差分析的矫正结果,一般两个结果会一致,如果不一致则以多元方差分析的结果为准。
结合本案例,因为其球形检验P值小于0.05,不符合假设,所以看多元方差分析或校正后的一元结果,如下图:
多元方差分析结果
一元方差分析结果(校正后)
蓝线代表右肺组;绿线代表全肺组
组间比较的单变量方差分析
可以发现,以上结果都显示差异有统计学意义(P<0.001),意味着:
1) 时间效应(time)具有统计学意义:即灌注海水后,犬肺的氧分压会随着灌注的时间的延长而逐渐下降,到灌注后60min达到最低;
2)交互效应(time*group)具有统计学意义:随着灌注时间的延长,单肺灌注与全肺灌注氧分压下降的幅度不同,从图形上看就是,直线的斜率不同,全肺灌注的犬氧分压下降幅度大(直线更陡峭)
3)单独组间效应(group)具有统计学意义:此处SPSS对多个因变量进行了数据变换,从而进行单变量方差分析,结果显示P<0.05,表明灌注部位会影响氧分压。
由此,对重复测量的方差分析进行一个简单总结:
重复测量方差分析最核心的功能是研究指标是否随着时间的变化而变化(time),拿到SPSS的分析结果,应该首先看“球形检验”,然后根据其结果,选择对应的分析表格。如果除了时间因素之外还有分组效应,则分析逻辑与单变量的单因素或多因素方差分析类似。