说明:

本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第五部分,使用非极大值抑制来消除预测出的重叠面积过大的边框,然后显示预测结果图像。

 

实验代码:

模型预测:

import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable

from source.data import single_test_reader, display_infer
from source.model import YOLOv3
from source.infer import get_nms_infer

num_classes = 7                                                                              # 类别数量
anchor_size = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326] # 锚框大小
anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]                                              # 锚框掩码
downsample_ratio = 32                                                                        # 下采样率

image_path = './dataset/test/images/1872.jpeg' # 预测图像路径
model_path = './output/darknet53-yolov3'       # 网络权重路径
sco_threshold = 0.70                           # 预测得分阈值:根据测试的平均精度在准确率和召回率之间取一个平衡值
nms_threshold = 0.45                           # 非极大值阈值

with fluid.dygraph.guard():
    # 读取图像
    image, image_size = single_test_reader(image_path) # 读取图像
    image = to_variable(image)                         # 转换格式
    image_size = to_variable(image_size)               # 转换格式
    
    # 加载模型
    model = YOLOv3(num_classes=num_classes, anchor_mask=anchor_mask) # 加载模型
    model_dict, _ = fluid.load_dygraph(model_path)                   # 加载权重
    model.load_dict(model_dict)                                      # 设置权重
    model.eval()                                                     # 设置验证
    
    # 前向传播
    infer = model(image)
    
    # 获取结果
    infer = get_nms_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio, 
                          sco_threshold, nms_threshold)
    
    # 显示结果
    print('image infer:', infer[0].shape[0]) # 显示图像预测结果数量
    display_infer(infer[0], image_path)      # 显示一张图像预测结果

结果:

image infer: 6

基于YOLOv3网络对昆虫进行目标检测和识别 基于yolov3的昆虫目标检测_采样率

infer.py文件

import numpy as np

def sigmoid(x):
    """
    功能:
        计算sigmoid函数
    输入:
        x - 输入数值
    输出:
        y - 输出数值
    """
    return 0.5 * (1.0 + np.tanh(0.5 * x))

# def sigmoid(x):
#     return 1.0 / (1.0 + np.exp(-x))

def get_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio):
    """
    功能:
        计算每个特征图像的预测边框和得分
    输入:
        infer            - 特征图像
        image_size       - 图像高宽
        num_classes      - 类别数量
        anchor_size      - 锚框大小
        anchor_mask      - 锚框掩码
        downsample_ratio - 下采样率
    输出:
        pdbox            - 预测边框
        pdsco            - 预测得分
    """
    # 调整特征形状
    batch_size = infer.shape[0]   # 特征批数
    num_rows   = infer.shape[2]   # 特征行数
    num_cols   = infer.shape[3]   # 特征列数
    num_anchor = len(anchor_mask) # 锚框数量
    
    infer = infer.numpy()
    infer = infer.reshape([-1, num_anchor, 5 + num_classes, num_rows, num_cols]) # 转换特征形状
    
    # 计算预测边框
    pdloc = infer[:, :, 0:4, :, :]           # 获取预测位置:[b,c,4,n,m]
    pdbox = np.zeros(pdloc.shape)            # 预测边框数组:[b,c,4,n,m]
    image_h = num_rows * downsample_ratio    # 预测图像高度
    image_w = num_cols * downsample_ratio    # 预测图像宽度
    
    for m in range(batch_size): # 遍历图像
        for i in range(num_rows): # 遍历行数
            for j in range(num_cols): # 遍历列数
                for k in range(num_anchor): # 遍历锚框
                    # 获取边框大小
                    anchor_w = anchor_size[2 * anchor_mask[k]]     # 锚框宽度
                    anchor_h = anchor_size[2 * anchor_mask[k] + 1] # 锚框高度
                    
                    # 设置预测边框
                    pdbox[m, k, 0, i, j] = j        # 预测边框cx
                    pdbox[m, k, 1, i, j] = i        # 预测边框cy
                    pdbox[m, k, 2, i, j] = anchor_w # 预测边框pw
                    pdbox[m, k, 3, i, j] = anchor_h # 预测边框ph
                    
    pdbox[:, :, 0, :, :] = (pdbox[:, :, 0, :, :] + sigmoid(pdloc[:, :, 0, :, :])) / num_cols # 预测边框x=cx + dx
    pdbox[:, :, 1, :, :] = (pdbox[:, :, 1, :, :] + sigmoid(pdloc[:, :, 1, :, :])) / num_rows # 预测边框y=cy + dy
    pdbox[:, :, 2, :, :] = (pdbox[:, :, 2, :, :] * np.exp(pdloc[:, :, 2, :, :])) / image_w   # 预测边框w=pw * exp(tw)
    pdbox[:, :, 3, :, :] = (pdbox[:, :, 3, :, :] * np.exp(pdloc[:, :, 3, :, :])) / image_h   # 预测边框h=ph * exp(th)
    pdbox = np.clip(pdbox, 0.0, 1.0) # 限制预测边框范围为[0,1]
    
    pdbox = pdbox.transpose((0, 1, 3, 4, 2))                     # 调整数据维度:[b,c,n,m,4]
    pdbox = pdbox.reshape((pdbox.shape[0], -1, pdbox.shape[-1])) # 调整数据形状:[b,c*n*m,4]
    
    # 调整坐标格式
    pdbox[:, :, 0] = pdbox[:, :, 0] - pdbox[:, :, 2] / 2.0 # 预测边框x1
    pdbox[:, :, 1] = pdbox[:, :, 1] - pdbox[:, :, 3] / 2.0 # 预测边框y1
    pdbox[:, :, 2] = pdbox[:, :, 0] + pdbox[:, :, 2]       # 预测边框x2
    pdbox[:, :, 3] = pdbox[:, :, 1] + pdbox[:, :, 3]       # 预测边框y2
    
    # 计算原图坐标
    scale = image_size.numpy() # 原图高宽
    for m in range(batch_size):
        pdbox[m, :, 0] = pdbox[m, :, 0] * scale[m, 1] # 预测边框x1
        pdbox[m, :, 1] = pdbox[m, :, 1] * scale[m, 0] # 预测边框y1
        pdbox[m, :, 2] = pdbox[m, :, 2] * scale[m, 1] # 预测边框x2
        pdbox[m, :, 3] = pdbox[m, :, 3] * scale[m, 0] # 预测边框y2
    
    # 计算预测得分
    pdobj = sigmoid(infer[:, :, 4, :, :])               # 预测物体概率:[b,c,n,m],对损失函数计算结果求sigmoid
    pdcls = sigmoid(infer[:, :, 5:5+num_classes, :, :]) # 预测类别概率:[b,c,7,n,m],对损失函数计算结果求sigmoid
    
    pdobj = np.expand_dims(pdobj, axis=2)                        # 添加数据维度:[b,c,1,n,m]
    pdsco = pdobj * pdcls                                        # 计算预测得分:[b,c,7,n,m]
    
    pdsco = pdsco.transpose((0, 1, 3, 4, 2))                     # 调整数据维度:[b,c,n,m,7]
    pdsco = pdsco.reshape((pdsco.shape[0], -1, pdsco.shape[-1])) # 调整数据形状:[b,c*n*m,7]
    pdsco = pdsco.transpose((0, 2, 1))                           # 调整数据维度:[b,7,c*n*m]
    
    return pdbox, pdsco

# def get_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio):
#     # 获取锚框大小
#     anchor_list = [] # 锚框列表
#     for i in anchor_mask: # 遍历锚框
#         anchor_list.append(anchor_size[2 * i])     # 锚框宽度
#         anchor_list.append(anchor_size[2 * i + 1]) # 锚框高度
    
#     # 计算预测结果
#     pdbox, pdsco = fluid.layers.yolo_box(
#         x=infer,
#         img_size=image_size,
#         class_num=num_classes,
#         anchors=anchor_list,
#         conf_thresh=0.01,
#         downsample_ratio=downsample_ratio)
    
#     pdsco = fluid.layers.transpose(pdsco, perm=[0, 2, 1])
    
#     return pdbox.numpy(), pdsco.numpy()

def get_sum_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio):
    """
    功能:
        计算三个输出的预测结果的边框和得分
    输入:
        infer            - 特征列表
        image_size       - 图像高宽
        num_classes      - 类别数量
        anchor_size      - 锚框大小
        anchor_mask      - 锚框掩码
        downsample_ratio - 下采样率
    输出:
        pdbox            - 预测边框
        pdsco            - 预测得分
    """
    # 计算预测结果
    pdbox_list = [] # 预测边框列表
    pdsco_list = [] # 预测得分列表
    for i in range(len(infer)):  # 遍历特征列表
        pdbox, pdsco = get_infer(infer[i], image_size, num_classes, anchor_size, anchor_mask[i], downsample_ratio)
        
        pdbox_list.append(pdbox) # 添加边框列表
        pdsco_list.append(pdsco) # 添加得分列表
        
        # 减小下采样率
        downsample_ratio //= 2   # 减小下采样率
    
    # 合并预测结果
    pdbox = np.concatenate(pdbox_list, axis=1) # 连接预测边框列表第一维
    pdsco = np.concatenate(pdsco_list, axis=2) # 连接预测得分列表第二维
    
    return pdbox, pdsco

##############################################################################################################

def get_box_iou_xyxy(box1, box2):
    """
    功能: 
        计算边框交并比值
    输入: 
        box1 - 边界框1
        box2 - 边界框2
    输出:
        iou  - 交并比值
    """
    # 计算交集面积
    x1_min, y1_min, x1_max, y1_max = box1[0], box1[1], box1[2], box1[3]
    x2_min, y2_min, x2_max, y2_max = box2[0], box2[1], box2[2], box2[3]
    
    x_min = np.maximum(x1_min, x2_min)
    y_min = np.maximum(y1_min, y2_min)
    x_max = np.minimum(x1_max, x2_max)
    y_max = np.minimum(y1_max, y2_max)
    
    w = np.maximum(x_max - x_min + 1.0, 0)
    h = np.maximum(y_max - y_min + 1.0, 0)
    
    intersection = w * h # 交集面积
    
    # 计算并集面积
    s1 = (y1_max - y1_min + 1.0) * (x1_max - x1_min + 1.0)
    s2 = (y2_max - y2_min + 1.0) * (x2_max - x2_min + 1.0)
    
    union = s1 + s2 - intersection # 并集面积
    
    # 计算交并比
    iou = intersection / union
    
    return iou

def get_nms_index(pdbox, pdsco, sco_threshold, nms_threshold):
    """
    功能:
        获取非极大值抑制预测索引
    输入:
        pdbox         - 预测边框
        pdsco         - 预测得分
        sco_threshold - 预测得分阈值
        nms_threshold - 非极大值阈值
    输出:
        nms_index     - 预测索引
    """
    # 获取得分索引
    sco_index = np.argsort(pdsco)[::-1] # 对得分逆向排序,获取预测得分索引
    
    # 非极大值抑制
    nms_index = [] # 预测索引列表
    while(len(sco_index) > 0): # 如果剩余得分索引数量大于0,则进行非极大值抑制
        # 获取最大得分
        max_index = sco_index[0]     # 获取最大得分索引
        max_score = pdsco[max_index] # 获取最大得分
        
        if max_score < sco_threshold: # 如果最大得分小于预测得分阈值,则不处理剩余得分索引
            break
        
        # 设置保留标识
        keep_flag = True # 保留标识为真
        for i in nms_index: # 遍历保留索引
            # 计算交并比值
            box1 = pdbox[max_index] # 第一个边框坐标
            box2 = pdbox[i]         # 保留的边框坐标
            
            iou = get_box_iou_xyxy(box1, box2) # 计算交并比值
            if iou > nms_threshold: # 如果交并比值大于非极大值阈值,则不处理剩余保留索引
                keep_flag = False # 保留标识为假
                break
        
        # 添加保留索引
        if keep_flag: # 如果保留标识为真,则添加预测索引
            nms_index.append(max_index) # 添加预测索引列表
        
        # 获取剩余索引
        sco_index = sco_index[1:]
    
    # 转换数据格式
    nms_index = np.array(nms_index)
    
    return nms_index

def get_nms_class(pdbox, pdsco, sco_threshold, nms_threshold):
    """
    功能:
        获取非极大值抑制的预测结果
    输入:
        pdbox         - 预测边框
        pdsco         - 预测得分
        sco_threshold - 预测得分阈值
        nms_threshold - 非极大值阈值
    输出:
        infer_list    - 预测结果列表
    """
    # 获取批次结果
    batch_size = pdbox.shape[0] # 预测批数数量
    class_numb = pdsco.shape[1] # 总的类别数量
    infer_list = []             # 预测结果列表
    
    for i in range(batch_size): # 遍历批次
        # 获取预测结果
        infer = [] # 每批预测列表
        for c in range(class_numb): # 遍历类别
            # 获取预测索引
            nms_index = get_nms_index(pdbox[i], pdsco[i][c], sco_threshold, nms_threshold)
            if len(nms_index) < 1: # 如果预测索引为0,则计算下一个类别索引
                continue
                
            # 设置预测结果
            nms_pdsco = pdsco[i][c][nms_index]            # 预测得分
            nms_pdbox = pdbox[i][nms_index]               # 预测边框
            nms_infer = np.zeros([nms_pdsco.shape[0], 6]) # 预测结果
            
            nms_infer[:, 0] = c                 # 设置预测类别
            nms_infer[:, 1] = nms_pdsco[:]      # 设置预测得分
            nms_infer[:, 2:6] = nms_pdbox[:, :] # 设置预测边框
            
            infer.append(nms_infer)             # 添加每类结果
        
        # 添加预测列表        
        if len(infer) > 0:
            infer = np.concatenate(infer, axis=0) # 合并各批预测结果
            infer_list.append(infer)              # 添加预测结果列表
        else:
            infer_list.append(infer)              # 添加空的预测结果
        
    return infer_list

##############################################################################################################

def get_nms_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio, 
                  sco_threshold, nms_threshold):
    """
    功能:
        获取三个输出的非极大值抑制的预测结果
    输入:
        infer            - 特征列表
        image_size       - 原图高宽
        num_classes      - 类别数量
        anchor_size      - 锚框大小
        anchor_mask      - 锚框掩码
        downsample_ratio - 下采样率
        sco_threshold    - 预测得分阈值
        nms_threshold    - 非极大值阈值
    输出:
        infer            - 预测结果
    """
    # 计算预测结果
    pdbox, pdsco = get_sum_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio)
    
    # 非极大值抑制
    infer = get_nms_class(pdbox, pdsco, sco_threshold, nms_threshold)
    
    return infer

 

参考资料:



https://aistudio.baidu.com/aistudio/projectdetail/742781

https://aistudio.baidu.com/aistudio/projectdetail/672017

https://aistudio.baidu.com/aistudio/projectdetail/868589

https://aistudio.baidu.com/aistudio/projectdetail/122277