1、Linux内存管理的机制与特点

OOM Killer

  1. OOM Killer 在 Linux 系统里如果内存不足时,会杀死一个正在运行的进程来释放一些内存。如果进程 是容器的entrypoint ,则容器退出。docker inspect 命令查看容器, 容器处于”exited”状态,并且”OOMKilled”是 true。
  2. Linux 里的程序都是调用 malloc() 来申请内存,如果内存不足,直接 malloc() 返回失败就可以,为什么还要去杀死正在运行的进程呢?Linux允许进程申请超过实际物理内存上限的内存。因为 malloc() 申请的是内存的虚拟地址,系统只是给了程序一个地址范围,由于没有写入数据,所以程序并没有得到真正的物理内存。物理内存只有程序真的往这个地址写入数据的时候,才会分配给程序。PS: 虚拟内存通过 ps auxVSZ 查看;物理内存 ps auxRES(也成为RSS) 查看
  3. 在发生 OOM 的时候,Linux 到底是根据什么标准来选择被杀的进程呢?这就要提到一个在 Linux 内核里有一个 oom_badness() 函数,就是它定义了选择进程的标准。
  4. 我们怎样才能快速确定容器发生了 OOM 呢?这个可以通过查看内核日志及时地发现。使用用 journalctl -k 命令,或者直接查看日志文件 /var/log/message

Memory Cgroup

/sys/fs/cgroup/memory

  1. memory.limit_in_bytes,一个控制组里所有进程可使用内存的最大值
  2. memory.oom_control,当控制组中的进程内存使用达到上限值时,这个参数能够决定会不会触发 OOM Killer(默认是),当然只能杀死控制组内的进程。echo 1 > memory.oom_control 即使控制组里所有进程使用的内存达到 memory.limit_in_bytes 设置的上限值,控制组也不会杀掉里面的进程,但会影响到控制组中正在申请物理内存页面的进程。这些进程会处于一个停止状态,不能往下运行了。
  3. memory.usage_in_bytes,只读,是当前控制组里所有进程实际使用的内存总和。

Linux 内存类型

  1. 内核需要分配内存给页表,内核栈,还有 slab,也就是内核各种数据结构的 Cache Pool;
  2. 用户态进程内存
  1. RSS 内存包含了进程的代码段内存,栈内存,堆内存,共享库的内存
  2. 文件读写的 Page Cache。是一种为了提高磁盘文件读写性能而利用空闲物理内存的机制,因为系统调用 read() 和 write() 的缺省行为都会把读过或者写过的页面存放在 Page Cache 里。
  1. Linux 的内存管理有一种内存页面回收机制(page frame reclaim),会根据系统里空闲物理内存是否低于某个阈值(wartermark),来决定是否启动内存的回收。内存回收的算法会根据不同类型的内存以及内存的最近最少用原则,就是 LRU(Least Recently Used)算法决定哪些内存页面先被释放。因为 Page Cache 的内存页面只是起到 Cache 作用,自然是会被优先释放的。

Memory Cgroup 里都不会对内核的内存做限制(比如页表,slab 等)。只限制用户态相关的两个内存类型,RSS(Resident Set Size) 和 Page Cache。当控制组里的进程需要申请新的物理内存,而且 memory.usage_in_bytes 里的值超过控制组里的内存上限值 memory.limit_in_bytes,这时我们前面说的 Linux 的内存回收(page frame reclaim)就会被调用起来。那么在这个控制组里的 page cache 的内存会根据新申请的内存大小释放一部分,这样我们还是能成功申请到新的物理内存,整个控制组里总的物理内存开销 memory.usage_in_bytes 还是不会超过上限值 memory.limit_in_bytes。PS:所以会出现 容器内存使用量总是在临界点 的现象。

在 Memory Cgroup 中有一个参数 memory.stat,可以显示在当前控制组里各种内存类型的实际的开销。我们不能用 Memory Cgroup 里的 memory.usage_in_bytes,而需要用 memory.stat 里的 rss 值。这个很像我们用 free 命令查看节点的可用内存,不能看”free”字段下的值,而要看除去 Page Cache 之后的”available”字段下的值。

swap

Swap 是一块磁盘空间,当内存写满的时候,就可以把内存中不常用的数据暂时写到这个 Swap 空间上。这样一来,内存空间就可以释放出来,用来满足新的内存申请的需求。

  1. 在宿主机节点上打开 Swap 空间,在容器中就是可以用到 Swap 的。
  1. 因为有了 Swap 空间,本来会被 OOM Kill 的容器,可以好好地运行了(RSS 没有超出)。如果一个容器中的程序发生了内存泄漏(Memory leak),那么本来 Memory Cgroup 可以及时杀死这个进程,让它不影响整个节点中的其他应用程序。结果现在这个内存泄漏的进程没被杀死,还会不断地读写 Swap 磁盘,反而影响了整个节点的性能。
  2. 在内存紧张的时候,Linux 系统怎么决定是先释放 Page Cache,还是先把匿名内存释放并写入到 Swap 空间里呢?如果系统先把 Page Cache 都释放了,那么一旦节点里有频繁的文件读写操作,系统的性能就会下降。如果 Linux 系统先把匿名内存都释放并写入到 Swap,那么一旦这些被释放的匿名内存马上需要使用,又需要从 Swap 空间读回到内存中,这样又会让 Swap(其实也是磁盘)的读写频繁,导致系统性能下降。
  1. 显然,我们在释放内存的时候,需要平衡 Page Cache 的释放和匿名内存的释放。Linux swappiness 参数值的作用是,在系统里有 Swap 空间之后,当系统需要回收内存的时候,是优先释放 Page Cache 中的内存,还是优先释放匿名内存(也就是写入 Swap)。
  2. 在每个 Memory Cgroup 控制组里也有一个 memory.swappiness。 不同就是每个 Memory Cgroup 控制组里的 swappiness 参数值为 0 的时候,就可以让控制组里的内存停止写入 Swap。

2、Linux内存管理的问题与解决

docker 中springboot 内存溢出 docker容器内存溢出_linux

由于 Linux 内核的原则是尽可能使用内存而非不间断回收,因此当容器内进程申请内存时,内存用量往往会持续上升。当容器的内存用量接近 Limit 时,将触发容器级别的直接内存回收(direct reclaim),回收干净的文件页,这个过程发生在进程申请内存的上下文,因此会造成容器内应用的卡顿;如果内存的申请速率较高,还可能导致容器 OOM (Out of Memory) Killed,引发容器内应用的运行中断和重启。

当整机内存资源紧张时,内核将根据空闲内存(内核接口统计的 Free 部分)的水位触发回收:当水位达到 Low 水位线时,触发后台内存回收,回收过程由内核线程 kswapd 完成,不会阻塞应用进程运行,且支持对脏页的回收;而当空闲水位达到 Min 水位线时(Min < Low),会触发全局的直接内存回收,该过程发生在进程分配内存的上下文,且期间需要扫描更多页面,因此十分影响性能,节点上所有容器都可能被干扰。当整机的内存分配速率超出且回收速率时,则会触发更大范围的 OOM,导致资源可用性下降。

公平性问题

资源超用(Usage > Request)的容器可能和未超用的容器竞争内存资源:对于 Request 层面,Kubelet 依据 CPU Request 设置 cgroups 接口 cpu.shares,作为容器间竞争 CPU 资源的相对权重,当节点的 CPU 资源紧张时,容器间共享 CPU 时间的比例将参考 Request 比值进行划分,满足公平性;而 Memory Request 则默认未设置 cgroups 接口,主要用于调度和驱逐参考。在节点的内存资源紧张时,由于 Memory Request 未映射到 cgroups 接口,容器间的可用内存并不会像 CPU 一样按 Request 比例划分,因此缺少资源的公平性保障。

Kubelet 在 Kubernetes 1.22 以上版本提供了 MemoryQoS 特性,通过 Linux cgroups v2 提供的 memcg QoS 能力来进一步保障容器的内存资源质量,其中包括:

  1. 将容器的 Memory Request 设置到 cgroups v2 接口 memory.min,锁定请求的内存不被全局内存回收。
  2. 基于容器的 Memory Limit 设置 cgroups v2 接口 memory.high,当 Pod 发生内存超用时(Memory Usage > Request)优先触发限流,避免无限制超用内存导致的 OOM。

但从用户使用资源的视角来看,依然存在一些不足:

  1. 当 Pod 的内存声明 Request = Limit 时,容器内依然可能出现资源紧张,触发的 memcg 级别的直接内存回收可能影响到应用服务的 RT(响应时间)。
  2. 方案目前未考虑对 cgroups v1 的兼容,在 cgroups v1 上的内存资源公平性问题仍未得到解决。

内存回收时的内存使用量的保证(锁定)能力

在 Kubernetes 集群中,Pod 之间可能有保障优先级的需求。比如高优先级的 Pod 需要更好的资源稳定性,当整机资源紧张时,需要尽可能地避免对高优先级 Pod 的影响。然而在一些真实场景中,低优先级的 Pod 往往运行着资源消耗型任务,意味着它们更容易导致大范围的内存资源紧张,干扰到高优先级 Pod 的资源质量,是真正的“麻烦制造者”。对此 Kubernetes 目前主要通过 Kubelet 驱逐使用低优先级的 Pod,但响应时机可能发生在全局内存回收之后。

阿里云容器服务 ACK 基于 Alibaba Cloud Linux 2 的内存子系统增强,用户可以在 cgroups v1 上提前使用到更完整的容器 Memory QoS 功能,如下所示:

  1. 保障 Pod 间内存回收的公平性,当整机内存资源紧张时,优先从内存超用(Usage > Request)的 Pod 中回收内存(Memory QoS 支持为这类Pod设置主动内存回收的水位线,将内存使用限制在水位线附近),约束破坏者以避免整机资源质量的下降。
  2. 当 Pod 的内存用量接近 Limit 时,优先在后台异步回收一部分内存,缓解直接内存回收带来的性能影响。
  3. 节点内存资源紧张时,优先保障 Guaranteed/Burstable Pod 的内存运行质量。Memory QoS 功能通过启用全局最低水位线分级和内核 memcg QoS,当整机内存资源紧张时,优先从 BE 容器中回收内存,降低全局内存回收对 LS 容器的影响;也支持优先回收超用的的内存资源,保障内存资源的公平性。

docker 中springboot 内存溢出 docker容器内存溢出_服务器_02