我们首先提出这样一个简单的需求:
现在要分析某网站的访问日志信息,统计来自不同IP的用户访问的次数,从而通过Geo信息来获得来访用户所在国家地区分布状况。这里我拿我网站的日志记录行示例,如下所示:
121.205.198.92
- - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
2
121.205.198.92
- - [21/Feb/2014:00:00:11 +0800] "POST /wp-comments-post.php HTTP/1.1" 302 26 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"
3
121.205.198.92
- - [21/Feb/2014:00:00:12 +0800] "GET /archives/417.html/ HTTP/1.1" 301 26 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
4
121.205.198.92
- - [21/Feb/2014:00:00:12 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
5
121.205.241.229
- - [21/Feb/2014:00:00:13 +0800] "GET /archives/526.html HTTP/1.1" 200 12080 "http://shiyanjun.cn/archives/526.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
6
121.205.241.229
- - [21/Feb/2014:00:00:15 +0800] "POST /wp-comments-post.php HTTP/1.1" 302 26 "http://shiyanjun.cn/archives/526.html/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"
Java实现Spark应用程序(Application)
我们实现的统计分析程序,有如下几个功能点:
- 从HDFS读取日志数据文件
- 将每行的第一个字段(IP地址)抽取出来
- 统计每个IP地址出现的次数
- 根据每个IP地址出现的次数进行一个降序排序
- 根据IP地址,调用GeoIP库获取IP所属国家
- 打印输出结果,每行的格式:[国家代码] IP地址 频率
下面,看我们使用Java实现的统计分析应用程序代码,如下所示:
package org.shirdrn.spark.job;
002
003
import java.io.File;
004
import java.io.IOException;
005
import java.util.Arrays;
006
import java.util.Collections;
007
import java.util.Comparator;
008
import java.util.List;
009
import java.util.regex.Pattern;
010
011
import org.apache.commons.logging.Log;
012
import org.apache.commons.logging.LogFactory;
013
import org.apache.spark.api.java.JavaPairRDD;
014
import org.apache.spark.api.java.JavaRDD;
015
import org.apache.spark.api.java.JavaSparkContext;
016
import org.apache.spark.api.java.function.FlatMapFunction;
017
import org.apache.spark.api.java.function.Function2;
018
import org.apache.spark.api.java.function.PairFunction;
019
import org.shirdrn.spark.job.maxmind.Country;
020
import org.shirdrn.spark.job.maxmind.LookupService;
021
022
import scala.Serializable;
023
import scala.Tuple2;
024
025
public class IPAddressStats implements Serializable
{
026
027
private static final long serialVersionUID
= 8533489548835413763L;
028
private static final Log
LOG = LogFactory.getLog(IPAddressStats.class);
029
private static final Pattern
SPACE = Pattern.compile("
");
030
private transient LookupService
lookupService;
031
private transient final String
geoIPFile;
032
033
public IPAddressStats(String
geoIPFile) {
034
this.geoIPFile
= geoIPFile;
035
try {
036
//
lookupService: get country code from a IP address
037
File
file = new File(this.geoIPFile);
038
LOG.info("GeoIP
file: " +
file.getAbsolutePath());
039
lookupService
= new AdvancedLookupService(file,
LookupService.GEOIP_MEMORY_CACHE);
040
} catch (IOException
e) {
041
throw new RuntimeException(e);
042
}
043
}
044
045
@SuppressWarnings("serial")
046
public void stat(String[]
args) {
047
JavaSparkContext
ctx = new JavaSparkContext(args[0], "IPAddressStats",
048
System.getenv("SPARK_HOME"),
JavaSparkContext.jarOfClass(IPAddressStats.class));
049
JavaRDD<String>
lines = ctx.textFile(args[1], 1);
050
051
//
splits and extracts ip address filed
052
JavaRDD<String>
words = lines.flatMap(new FlatMapFunction<String,
String>() {
053
@Override
054
public Iterable<String>
call(String s) {
055
//
121.205.198.92 - - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101
Firefox/11.0"
056
//
ip address
057
return Arrays.asList(SPACE.split(s)[0]);
058
}
059
});
060
061
//
map
062
JavaPairRDD<String,
Integer> ones = words.map(new PairFunction<String,
String, Integer>() {
063
@Override
064
public Tuple2<String,
Integer> call(String s) {
065
return new Tuple2<String,
Integer>(s, 1);
066
}
067
});
068
069
//
reduce
070
JavaPairRDD<String,
Integer> counts = ones.reduceByKey(new Function2<Integer,
Integer, Integer>() {
071
@Override
072
public Integer
call(Integer i1, Integer i2) {
073
return i1
+ i2;
074
}
075
});
076
077
List<Tuple2<String,
Integer>> output = counts.collect();
078
079
//
sort statistics result by value
080
Collections.sort(output, new Comparator<Tuple2<String,
Integer>>() {
081
@Override
082
public int compare(Tuple2<String,
Integer> t1, Tuple2<String, Integer> t2) {
083
if(t1._2
< t2._2) {
084
return 1;
085
} else if(t1._2
> t2._2) {
086
return -1;
087
}
088
return 0;
089
}
090
});
091
092
writeTo(args,
output);
093
094
}
095
096
private void writeTo(String[]
args, List<Tuple2<String, Integer>> output) {
097
for (Tuple2<?,
?> tuple : output) {
098
Country
country = lookupService.getCountry((String) tuple._1);
099
LOG.info("[" +
country.getCode() + "]
" +
tuple._1 + "\t" +
tuple._2);
100
}
101
}
102
103
public static void main(String[]
args) {
104
//
./bin/run-my-java-example org.shirdrn.spark.job.IPAddressStatsspark://m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat
105
if (args.length
< 3)
{
106
System.err.println("Usage:
IPAddressStats <master> <inFile> <GeoIPFile>");
107
System.err.println("
Example: org.shirdrn.spark.job.IPAddressStatsspark://m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat");
108
System.exit(1);
109
}
110
111
String
geoIPFile = args[2];
112
IPAddressStats
stats = new IPAddressStats(geoIPFile);
113
stats.stat(args);
114
115
System.exit(0);
116
117
}
118
119
}
具体实现逻辑,可以参考代码中的注释。我们使用Maven管理构建Java程序,首先看一下我的pom配置中所依赖的软件包,如下所示:
<dependencies>
02
<dependency>
03
<groupId>org.apache.spark</groupId>
04
<artifactId>spark-core_2.10</artifactId>
05
<version>0.9.0-incubating</version>
06
</dependency>
07
<dependency>
08
<groupId>log4j</groupId>
09
<artifactId>log4j</artifactId>
10
<version>1.2.16</version>
11
</dependency>
12
<dependency>
13
<groupId>dnsjava</groupId>
14
<artifactId>dnsjava</artifactId>
15
<version>2.1.1</version>
16
</dependency>
17
<dependency>
18
<groupId>commons-net</groupId>
19
<artifactId>commons-net</artifactId>
20
<version>3.1</version>
21
</dependency>
22
<dependency>
23
<groupId>org.apache.hadoop</groupId>
24
<artifactId>hadoop-client</artifactId>
25
<version>1.2.1</version>
26
</dependency>
27
</dependencies>
需要说明的是,当我们将程序在Spark集群上运行时,它要求我们的编写的Job能够进行序列化,如果某些字段不需要序列化或者无法序列化,可以直接使用 transient修饰即可,如上面的属性lookupService没有实现序列化接口,使用transient使其不执行序列化,否则的话,可能会出 现类似如下的错误:
14/03/10
22:34:06 INFO scheduler.DAGScheduler: Failed to run collect at IPAddressStats.java:76
02
Exception
in thread "main" org.apache.spark.SparkException: Job aborted: Task not
serializable: java.io.NotSerializableException:
org.shirdrn.spark.job.IPAddressStats
03
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
04
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
05
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
06
at
scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
07
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
08
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:794)
09
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:737)
10
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:741)
11
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:740)
12
at
scala.collection.immutable.List.foreach(List.scala:318)
13
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:740)
14
at
org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:569)
15
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
16
at
akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
17
at
akka.actor.ActorCell.invoke(ActorCell.scala:456)
18
at
akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
19
at
akka.dispatch.Mailbox.run(Mailbox.scala:219)
20
at
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
21
at
scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
22
at
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
23
at
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
24
at
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
在Spark集群上运行Java程序
这里,我使用了Maven管理构建Java程序,实现上述代码以后,使用Maven的maven-assembly-plugin插件,配置内容如下所示:
<plugin>
02
<artifactId>maven-assembly-plugin</artifactId>
03
<configuration>
04
<archive>
05
<manifest>
06
<mainClass>org.shirdrn.spark.job.UserAgentStats</mainClass>
07
</manifest>
08
</archive>
09
<descriptorRefs>
10
<descriptorRef>jar-with-dependencies</descriptorRef>
11
</descriptorRefs>
12
<excludes>
13
<exclude>*.properties</exclude>
14
<exclude>*.xml</exclude>
15
</excludes>
16
</configuration>
17
<executions>
18
<execution>
19
<id>make-assembly</id>
20
<phase>package</phase>
21
<goals>
22
<goal>single</goal>
23
</goals>
24
</execution>
25
</executions>
26
</plugin>
将相关依赖库文件都打进程序包里面,最后拷贝JAR文件到Linux系统下(不一定非要在Spark集群的Master节点上),保证该节点上Spark 的环境变量配置正确即可看。Spark软件发行包解压缩后,可以看到脚本bin/run-example,我们可以直接修改该脚本,将对应的路径指向我们 实现的Java程序包(修改变量EXAMPLES_DIR以及我们的JAR文件存放位置相关的内容),使用该脚本就可以运行,脚本内容如下所示:
cygwin=false
02
case "`uname`" in
03
CYGWIN*)
cygwin=true;;
04
esac
05
06
SCALA_VERSION=2.10
07
08
#
Figure out where the Scala framework is installed
09
FWDIR="$(cd
`dirname $0`/..; pwd)"
10
11
#
Export this as SPARK_HOME
12
export SPARK_HOME="$FWDIR"
13
14
#
Load environment variables from conf/spark-env.sh, if it exists
15
if [
-e "$FWDIR/conf/spark-env.sh" ]
; then
16
.
$FWDIR/conf/spark-env.sh
17
fi
18
19
if [
-z "$1" ]; then
20
echo "Usage:
run-example <example-class> [<args>]" >&2
21
exit 1
22
fi
23
24
#
Figure out the JAR file that our examples were packaged into. This includes a bit of a hack
25
#
to avoid the -sources and -doc packages that are built by publish-local.
26
EXAMPLES_DIR="$FWDIR"/java-examples
27
SPARK_EXAMPLES_JAR=""
28
if [
-e "$EXAMPLES_DIR"/*.jar
]; then
29
export SPARK_EXAMPLES_JAR=`ls "$EXAMPLES_DIR"/*.jar`
30
fi
31
if [[
-z $SPARK_EXAMPLES_JAR ]]; then
32
echo "Failed
to find Spark examples assembly in $FWDIR/examples/target" >&2
33
echo "You
need to build Spark with sbt/sbt assembly before running this program" >&2
34
exit 1
35
fi
36
37
38
#
Since the examples JAR ideally shouldn't include spark-core (that dependency should be
39
#
"provided"), also add our standard Spark classpath, built using compute-classpath.sh.
40
CLASSPATH=`$FWDIR/bin/compute-classpath.sh`
41
CLASSPATH="$SPARK_EXAMPLES_JAR:$CLASSPATH"
42
43
if $cygwin; then
44
CLASSPATH=`cygpath
-wp $CLASSPATH`
45
export SPARK_EXAMPLES_JAR=`cygpath
-w $SPARK_EXAMPLES_JAR`
46
fi
47
48
#
Find java binary
49
if [
-n "${JAVA_HOME}" ]; then
50
RUNNER="${JAVA_HOME}/bin/java"
51
else
52
if [
`command -v java`
]; then
53
RUNNER="java"
54
else
55
echo "JAVA_HOME
is not set" >&2
56
exit 1
57
fi
58
fi
59
60
#
Set JAVA_OPTS to be able to load native libraries and to set heap size
61
JAVA_OPTS="$SPARK_JAVA_OPTS"
62
JAVA_OPTS="$JAVA_OPTS
-Djava.library.path=$SPARK_LIBRARY_PATH"
63
#
Load extra JAVA_OPTS from conf/java-opts, if it exists
64
if [
-e "$FWDIR/conf/java-opts" ]
; then
65
JAVA_OPTS="$JAVA_OPTS
`cat $FWDIR/conf/java-opts`"
66
fi
67
export JAVA_OPTS
68
69
if [ "$SPARK_PRINT_LAUNCH_COMMAND" == "1" ]; then
70
echo -n "Spark
Command: "
71
echo "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@"
72
echo "========================================"
73
echo
74
fi
75
76
exec "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@"
在Spark上运行我们开发的Java程序,执行如下命令:
cd /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1
2
./bin/run-my-java-example
org.shirdrn.spark.job.IPAddressStats spark://m1:7077hdfs://m1:9000/user/shirdrn/wwwlog20140222.log /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat
我实现的程序类org.shirdrn.spark.job.IPAddressStats运行需要3个参数:
- Spark集群主节点URL:例如我的是spark://m1:7077
- 输入文件路径:业务相关的,我这里是从HDFS上读取文件hdfs://m1:9000/user/shirdrn/wwwlog20140222.log
- GeoIP库文件:业务相关的,用来计算IP地址所属国家的外部文件
如果程序没有错误,能够正常运行,控制台输出程序运行日志,示例如下所示:
01
14/03/10
22:17:24 INFO job.IPAddressStats: GeoIP file:
/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat
02
SLF4J:
Class path contains multiple SLF4J bindings.
03
SLF4J:
Found binding in
[jar:file:/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/spark-0.0.1-SNAPSHOT-jar-with-dependencies.jar!/org/slf4j/impl/StaticLoggerBinder.class]
04
SLF4J:
Found binding in
[jar:file:/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/assembly/target/scala-2.10/spark-assembly_2.10-0.9.0-incubating-hadoop1.0.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
05
SLF4J:
See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
06
SLF4J:
Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
07
14/03/10
22:17:25 INFO slf4j.Slf4jLogger: Slf4jLogger started
08
14/03/10
22:17:25 INFO Remoting: Starting remoting
09
14/03/10
22:17:25 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@m1:57379]
10
14/03/10
22:17:25 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@m1:57379]
11
14/03/10
22:17:25 INFO spark.SparkEnv: Registering BlockManagerMaster
12
14/03/10
22:17:25 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local-20140310221725-c1cb
13
14/03/10
22:17:25 INFO storage.MemoryStore: MemoryStore started with capacity 143.8 MB.
14
14/03/10
22:17:25 INFO network.ConnectionManager: Bound socket to port 45189 with id = ConnectionManagerId(m1,45189)
15
14/03/10
22:17:25 INFO storage.BlockManagerMaster: Trying to register BlockManager
16
14/03/10
22:17:25 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager m1:45189 with 143.8 MB RAM
17
14/03/10
22:17:25 INFO storage.BlockManagerMaster: Registered BlockManager
18
14/03/10
22:17:25 INFO spark.HttpServer: Starting HTTP Server
19
14/03/10
22:17:25 INFO server.Server: jetty-7.x.y-SNAPSHOT
20
14/03/10
22:17:25 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:49186
21
14/03/10
22:17:25 INFO broadcast.HttpBroadcast: Broadcast server started athttp://10.95.3.56:49186
22
14/03/10
22:17:25 INFO spark.SparkEnv: Registering MapOutputTracker
23
14/03/10
22:17:25 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-56c3e30d-a01b-4752-83d1-af1609ab2370
24
14/03/10
22:17:25 INFO spark.HttpServer: Starting HTTP Server
25
14/03/10
22:17:25 INFO server.Server: jetty-7.x.y-SNAPSHOT
26
14/03/10
22:17:25 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:52073
27
14/03/10
22:17:26 INFO server.Server: jetty-7.x.y-SNAPSHOT
28
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage/rdd,null}
29
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage,null}
30
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/stage,null}
31
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/pool,null}
32
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages,null}
33
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/environment,null}
34
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/executors,null}
35
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/metrics/json,null}
36
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/static,null}
37
14/03/10
22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/,null}
38
14/03/10
22:17:26 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
39
14/03/10
22:17:26 INFO ui.SparkUI: Started Spark Web UI at http://m1:4040
40
14/03/10
22:17:26 INFO spark.SparkContext: Added JAR
/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/spark-0.0.1-SNAPSHOT-jar-with-dependencies.jar
at http://10.95.3.56:52073/jars/spark-0.0.1-SNAPSHOT-jar-with-dependencies.jar with
timestamp 1394515046396
41
14/03/10
22:17:26 INFO client.AppClient$ClientActor: Connecting to masterspark://m1:7077...
42
14/03/10
22:17:26 INFO storage.MemoryStore: ensureFreeSpace(60341) called with curMem=0, maxMem=150837657
43
14/03/10
22:17:26 INFO storage.MemoryStore: Block broadcast_0 stored as values to memory (estimated size 58.9 KB, free 143.8 MB)
44
14/03/10
22:17:26 INFO cluster.SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20140310221726-0000
45
14/03/10
22:17:27 INFO client.AppClient$ClientActor: Executor added:
app-20140310221726-0000/0 on worker-20140310221648-s1-52544 (s1:52544)
with 1 cores
46
14/03/10
22:17:27 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID
app-20140310221726-0000/0 on hostPort s1:52544 with 1 cores, 512.0 MB
RAM
47
14/03/10
22:17:27 WARN util.NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
48
14/03/10
22:17:27 WARN snappy.LoadSnappy: Snappy native library not loaded
49
14/03/10
22:17:27 INFO client.AppClient$ClientActor: Executor updated: app-20140310221726-0000/0 is now RUNNING
50
14/03/10
22:17:27 INFO mapred.FileInputFormat: Total input paths to process : 1
51
14/03/10
22:17:27 INFO spark.SparkContext: Starting job: collect at IPAddressStats.java:77
52
14/03/10
22:17:27 INFO scheduler.DAGScheduler: Registering RDD 4 (reduceByKey at IPAddressStats.java:70)
53
14/03/10
22:17:27 INFO scheduler.DAGScheduler: Got job 0 (collect at IPAddressStats.java:77) with 1 output partitions (allowLocal=false)
54
14/03/10
22:17:27 INFO scheduler.DAGScheduler: Final stage: Stage 0 (collect at IPAddressStats.java:77)
55
14/03/10
22:17:27 INFO scheduler.DAGScheduler: Parents of final stage: List(Stage 1)
56
14/03/10
22:17:27 INFO scheduler.DAGScheduler: Missing parents: List(Stage 1)
57
14/03/10
22:17:27 INFO scheduler.DAGScheduler: Submitting Stage 1
(MapPartitionsRDD[4] at reduceByKey at IPAddressStats.java:70), which
has no missing parents
58
14/03/10
22:17:27 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from
Stage 1 (MapPartitionsRDD[4] at reduceByKey at IPAddressStats.java:70)
59
14/03/10
22:17:27 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
60
14/03/10
22:17:28 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@s1:59233/user/Executor#-671170811] with ID 0
61
14/03/10
22:17:28 INFO scheduler.TaskSetManager: Starting task 1.0:0 as TID 0 on executor 0: s1 (PROCESS_LOCAL)
62
14/03/10
22:17:28 INFO scheduler.TaskSetManager: Serialized task 1.0:0 as 2396 bytes in 5 ms
63
14/03/10
22:17:29 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager s1:47282 with 297.0 MB RAM
64
14/03/10
22:17:32 INFO scheduler.TaskSetManager: Finished TID 0 in 3376 ms on s1 (progress: 0/1)
65
14/03/10
22:17:32 INFO scheduler.DAGScheduler: Completed ShuffleMapTask(1, 0)
66
14/03/10
22:17:32 INFO scheduler.DAGScheduler: Stage 1 (reduceByKey at IPAddressStats.java:70) finished in 4.420 s
67
14/03/10
22:17:32 INFO scheduler.DAGScheduler: looking for newly runnable stages
68
14/03/10
22:17:32 INFO scheduler.DAGScheduler: running: Set()
69
14/03/10
22:17:32 INFO scheduler.DAGScheduler: waiting: Set(Stage 0)
70
14/03/10
22:17:32 INFO scheduler.DAGScheduler: failed: Set()
71
14/03/10
22:17:32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 1.0 from pool
72
14/03/10
22:17:32 INFO scheduler.DAGScheduler: Missing parents for Stage 0: List()
73
14/03/10
22:17:32 INFO scheduler.DAGScheduler: Submitting Stage 0
(MapPartitionsRDD[6] at reduceByKey at IPAddressStats.java:70), which is
now runnable
74
14/03/10
22:17:32 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from
Stage 0 (MapPartitionsRDD[6] at reduceByKey at IPAddressStats.java:70)
75
14/03/10
22:17:32 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
76
14/03/10
22:17:32 INFO scheduler.TaskSetManager: Starting task 0.0:0 as TID 1 on executor 0: s1 (PROCESS_LOCAL)
77
14/03/10
22:17:32 INFO scheduler.TaskSetManager: Serialized task 0.0:0 as 2255 bytes in 1 ms
78
14/03/10
22:17:32 INFO spark.MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark@s1:33534
79
14/03/10
22:17:32 INFO spark.MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 120 bytes
80
14/03/10
22:17:32 INFO scheduler.TaskSetManager: Finished TID 1 in 282 ms on s1 (progress: 0/1)
81
14/03/10
22:17:32 INFO scheduler.DAGScheduler: Completed ResultTask(0, 0)
82
14/03/10
22:17:32 INFO scheduler.DAGScheduler: Stage 0 (collect at IPAddressStats.java:77) finished in 0.314 s
83
14/03/10
22:17:32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 0.0 from pool
84
14/03/10
22:17:32 INFO spark.SparkContext: Job finished: collect at IPAddressStats.java:77, took 4.870958309 s
85
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 58.246.49.218 312
86
14/03/10
22:17:32 INFO job.IPAddressStats: [KR] 1.234.83.77 300
87
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 120.43.11.16 212
88
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 110.85.72.254 207
89
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 27.150.229.134 185
90
14/03/10
22:17:32 INFO job.IPAddressStats: [HK] 180.178.52.181 181
91
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 120.37.210.212 180
92
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 222.77.226.83 176
93
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 120.43.11.205 169
94
14/03/10
22:17:32 INFO job.IPAddressStats: [CN] 120.43.9.19 165
95
...
另外,需要说明的时候,如果在Unix环境下使用Eclipse使用Java开发Spark应用程序,也能够直接通过Eclipse连接Spark集群,并提交开发的应用程序,然后交给集群去处理。
参考链接
- https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples
- http://spark.apache.org/docs/latest/java-programming-guide.html