Hadoop-Mapreduce
文章目录
- Hadoop-Mapreduce
- 7 MapReduce 排序和序列化
- Step 1. 自定义类型和比较器
- Step 2. Mapper
- Step 3.Reducer
- Step 4. Main 入口
- Step 5.运行
- Linux环境下运行
- 本地运行
- 8 规约Combiner
- 概念
- 实现步骤
- 9 MapReduce案例-流量统计
- 需求一: 统计求和
- Step 1: 自定义map的输出value对象FlowBean
- Step 2: 定义FlowMapper类
- Step 3: 定义FlowReducer类
- Step 4: 程序main函数入口FlowMain
- 需求二: 上行流量倒序排序(递减排序)
- Step 1: 定义FlowBean实现WritableComparable实现比较排序
- Step 2: 定义FlowMapper
- Step 3: 定义FlowReducer
- Step 4: 程序main函数入口
- 需求三: 手机号码分区
- 自定义分区
- 作业运行设置
- 修改输入输出路径, 并放入集群运行
代码及资料:
链接:https://pan.baidu.com/s/1HQxgbi6hZk0yLXnamm0Ftg 提取码:ei8o
复制这段内容后打开百度网盘手机App,操作更方便哦
接上一篇博客
7 MapReduce 排序和序列化
- 序列化 (Serialization) 是指把结构化对象转化为字节流
- 反序列化 (Deserialization) 是序列化的逆过程. 把字节流转为结构化对象. 当要在进程间传递对象或持久化对象的时候, 就需要序列化对象成字节流, 反之当要将接收到或从磁盘读取的字节流转换为对象, 就要进行反序列化
- Java 的序列化 (Serializable) 是一个重量级序列化框架, 一个对象被序列化后, 会附带很多额外的信息 (各种校验信息, header, 继承体系等), 不便于在网络中高效传输. 所以, Hadoop 自己开发了一套序列化机制(Writable), 精简高效. 不用像 Java 对象类一样传输多层的父子关系, 需要哪个属性就传输哪个属性值, 大大的减少网络传输的开销
- Writable 是 Hadoop 的序列化格式, Hadoop 定义了这样一个 Writable 接口. 一个类要支持可序列化只需实现这个接口即可
- 另外 Writable 有一个子接口是 WritableComparable, WritableComparable 是既可实现序列化, 也可以对key进行比较, 我们这里可以通过自定义 Key 实现 WritableComparable 来实现我们的排序功能
数据格式如下
a 1
a 9
b 3
a 7
b 8
b 10
a 5
要求:
- 第一列按照字典顺序进行排列
- 第一列相同的时候, 第二列按照升序进行排列
解决思路:
- 将 Map 端输出的
<key,value>
中的 key 和 value 组合成一个新的 key (newKey), value值不变 - 这里就变成
<(key,value),value>
, 在针对 newKey 排序的时候, 如果 key 相同, 就再对value进行排序
Step 1. 自定义类型和比较器
package cn.wbslz.mapreduce.sort;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class SortBean implements WritableComparable<SortBean> {
private String word;
private int num;
public String getWord() {
return word;
}
public void setWord(String word) {
this.word = word;
}
public int getNum() {
return num;
}
public void setNum(int num) {
this.num = num;
}
//实现比较器,指定排序规则
/*
规则:
- 第一列(word)按照字典顺序进行排列 //26个单词顺序 如: aac abc abd
- 第一列相同的时候, 第二列(num)按照升序进行排列
*/
@Override
public int compareTo(SortBean sortBean) {
//将前单词与传入单词比较
//先对第一列排序word顺序
int result = this.word.compareTo(sortBean.word);
/*
result>0: 表示当前单词比传入单词大
result=0:表示当前单词与传入单词相同
result<0:表示当前单词比传入单词小
*/
//如果第一列相同,则按照第二列进行排序
if(result==0){
return this.num - sortBean.num;
}
return result;
}
//实现序列化
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeUTF(word);//字符串默认调用
dataOutput.writeInt(num);
}
//反序列化
@Override
public void readFields(DataInput dataInput) throws IOException {
this.word = dataInput.readUTF();
this.num = dataInput.readInt();
}
@Override
public String toString() {
return word + "\t" + num;
}
}
Step 2. Mapper
package cn.wbslz.mapreduce.sort;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class SortMapper extends Mapper<LongWritable, Text, SortBean, NullWritable> {
/**
* map方法将k1,v1转为k2,v2
* k1 v1
* 0 a 3
* 5 b 7
* ===============
* k2 v2
* SortBean(a 3) NullWriteble
* SortBean(b 7) NullWriteble
*
* @param key
* @param value
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.将行文本数据(v1)拆分,并将数据封装到SortBean中,就可以得到v2
String[] split = value.toString().split("\t");
SortBean sortBean = new SortBean();
sortBean.setWord(split[0]);
sortBean.setNum(Integer.parseInt(split[1]));
//2.将k2,v2写入上下文中
context.write(sortBean,NullWritable.get());
}
}
Step 3.Reducer
package cn.wbslz.mapreduce.sort;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class SortReducer extends Reducer<SortBean, NullWritable,SortBean,NullWritable> {
/**
* 将新的k2,v2转为k3,v3
* @param key
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(SortBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
context.write(key,NullWritable.get());
}
}
Step 4. Main 入口
package cn.wbslz.mapreduce.sort;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class JobMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
//1.创建job对象
Job job = Job.getInstance(super.getConf(), "mapreduce_sort");
//2.配置job任务(八个步骤)
//第一步:设置输入类和输入路径
job.setInputFormatClass(TextInputFormat.class);
//虚拟机运行输入路径
//TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/input/sort_input"));
//本地运行输入路径配置
TextInputFormat.addInputPath(job, new Path("file:///D:\\IdeaWorkSpace\\bigDate\\data\\sort\\sort_input\\*"));
//第二步:设置Mapper类和数据类型
job.setMapperClass(SortMapper.class);
job.setMapOutputKeyClass(SortBean.class);
job.setMapOutputValueClass(NullWritable.class);
//第三,四,五,六 使用默认配置
//第七步:设置reducer类和类型
job.setReducerClass(SortReducer.class);
job.setOutputKeyClass(SortBean.class);
job.setOutputValueClass(NullWritable.class);
//第八步:设置输出类型和输出路径
job.setOutputFormatClass(TextOutputFormat.class);
//虚拟机运行输出路径配置
//TextOutputFormat.setOutputPath(job,new Path("hdfs://node01:8020/out/sort_out"));
//本地运行输出路径配置
TextOutputFormat.setOutputPath(job,new Path("file:///D:\\IdeaWorkSpace\\bigDate\\data\\sort\\sort_output"));
//3:等待任务结束
boolean bl = job.waitForCompletion(true);
return bl ? 0:1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
//启动job任务
int run = ToolRunner.run(configuration, new JobMain(), args);
System.exit(run);
}
}
Step 5.运行
Linux环境下运行
- 将程序打包
- 将原文件与打包好的程序上传到node01中
- 将sort.txt文件上传到input/sort_input目录
- 执行命令
hadoop jar original-day06_mapreduce-1.0-SNAPSHOT.jar cn.wbslz.mapreduce.sort.JobMain
- 运行结果:
本地运行
- 在本地创建输入目录并原文件放入
- 修改代码地址(程序中已有)
- 运行main函数
- 运行结果
8 规约Combiner
概念
每一个 map 都可能会产生大量的本地输出,Combiner 的作用就是对 map 端的输出先做一次合并,以减少在 map 和 reduce 节点之间的数据传输量,以提高网络IO 性能,是 MapReduce 的一种优化手段之一
- combiner 是 MR 程序中 Mapper 和 Reducer 之外的一种组件
- combiner 组件的父类就是 Reducer
- combiner 和 reducer 的区别在于运行的位置
- Combiner 是在每一个 maptask 所在的节点运行
- Reducer 是接收全局所有 Mapper 的输出结果
- combiner 的意义就是对每一个 maptask 的输出进行局部汇总,以减小网络传输量
wordCount案例无combiner
wordCount案例有combiner
实现步骤
- 自定义一个 combiner 继承 Reducer,重写 reduce 方法
- 在 job 中设置
job.setCombinerClass(CustomCombiner.class)
combiner 能够应用的前提是不能影响最终的业务逻辑,而且,combiner 的输出 kv 应该跟 reducer 的输入 kv 类型要对应起来
9 MapReduce案例-流量统计
数据:
需求一: 统计求和
统计每个手机号的上行数据包总和,下行数据包总和,上行总流量之和,下行总流量之和
分析:以手机号码作为key值,上行流量,下行流量,上行总流量,下行总流量四个字段作为value值,然后以这个key,和value作为map阶段的输出,reduce阶段的输入
分析:
Step 1: 自定义map的输出value对象FlowBean
public class FlowBean implements Writable {
private Integer upFlow;
private Integer downFlow;
private Integer upCountFlow;
private Integer downCountFlow;
@Override
public void write(DataOutput out) throws IOException {
out.writeInt(upFlow);
out.writeInt(downFlow);
out.writeInt(upCountFlow);
out.writeInt(downCountFlow);
}
@Override
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readInt();
this.downFlow = in.readInt();
this.upCountFlow = in.readInt();
this.downCountFlow = in.readInt();
}
public FlowBean() {
}
public FlowBean(Integer upFlow, Integer downFlow, Integer upCountFlow, Integer downCountFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.upCountFlow = upCountFlow;
this.downCountFlow = downCountFlow;
}
public Integer getUpFlow() {
return upFlow;
}
public void setUpFlow(Integer upFlow) {
this.upFlow = upFlow;
}
public Integer getDownFlow() {
return downFlow;
}
public void setDownFlow(Integer downFlow) {
this.downFlow = downFlow;
}
public Integer getUpCountFlow() {
return upCountFlow;
}
public void setUpCountFlow(Integer upCountFlow) {
this.upCountFlow = upCountFlow;
}
public Integer getDownCountFlow() {
return downCountFlow;
}
public void setDownCountFlow(Integer downCountFlow) {
this.downCountFlow = downCountFlow;
}
@Override
public String toString() {
return "FlowBean{" +
"upFlow=" + upFlow +
", downFlow=" + downFlow +
", upCountFlow=" + upCountFlow +
", downCountFlow=" + downCountFlow +
'}';
}
}
Step 2: 定义FlowMapper类
public class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1:拆分手机号
String[] split = value.toString().split("\t");
String phoneNum = split[1];
//2:获取四个流量字段
FlowBean flowBean = new FlowBean();
flowBean.setUpFlow(Integer.parseInt(split[6]));
flowBean.setDownFlow(Integer.parseInt(split[7]));
flowBean.setUpCountFlow(Integer.parseInt(split[8]));
flowBean.setDownCountFlow(Integer.parseInt(split[9]));
//3:将k2和v2写入上下文中
context.write(new Text(phoneNum), flowBean);
}
}
Step 3: 定义FlowReducer类
public class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean> {
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
//封装新的FlowBean
FlowBean flowBean = new FlowBean();
Integer upFlow = 0;
Integer downFlow = 0;
Integer upCountFlow = 0;
Integer downCountFlow = 0;
for (FlowBean value : values) {
upFlow += value.getUpFlow();
downFlow += value.getDownFlow();
upCountFlow += value.getUpCountFlow();
downCountFlow += value.getDownCountFlow();
}
flowBean.setUpFlow(upFlow);
flowBean.setDownFlow(downFlow);
flowBean.setUpCountFlow(upCountFlow);
flowBean.setDownCountFlow(downCountFlow);
//将K3和V3写入上下文中
context.write(key, flowBean);
}
}
Step 4: 程序main函数入口FlowMain
public class JobMain extends Configured implements Tool {
//该方法用于指定一个job任务
@Override
public int run(String[] args) throws Exception {
//1:创建一个job任务对象
Job job = Job.getInstance(super.getConf(), "mapreduce_flowcount");
//如果打包运行出错,则需要加该配置
job.setJarByClass(JobMain.class);
//2:配置job任务对象(八个步骤)
//第一步:指定文件的读取方式和读取路径
job.setInputFormatClass(TextInputFormat.class);
//TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/wordcount"));
TextInputFormat.addInputPath(job, new Path("file:///D:\\input\\flowcount_input"));
//第二步:指定Map阶段的处理方式和数据类型
job.setMapperClass(FlowCountMapper.class);
//设置Map阶段K2的类型
job.setMapOutputKeyClass(Text.class);
//设置Map阶段V2的类型
job.setMapOutputValueClass(FlowBean.class);
//第三(分区),四 (排序)
//第五步: 规约(Combiner)
//第六步 分组
//第七步:指定Reduce阶段的处理方式和数据类型
job.setReducerClass(FlowCountReducer.class);
//设置K3的类型
job.setOutputKeyClass(Text.class);
//设置V3的类型
job.setOutputValueClass(FlowBean.class);
//第八步: 设置输出类型
job.setOutputFormatClass(TextOutputFormat.class);
//设置输出的路径
TextOutputFormat.setOutputPath(job, new Path("file:///D:\\out\\flowcount_out"));
//等待任务结束
boolean bl = job.waitForCompletion(true);
return bl ? 0:1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
//启动job任务
int run = ToolRunner.run(configuration, new JobMain(), args);
System.exit(run);
}
}
运行结果:
需求二: 上行流量倒序排序(递减排序)
分析,以需求一的输出数据作为排序的输入数据,自定义FlowBean,以FlowBean为map输出的key,以手机号作为Map输出的value,因为MapReduce程序会对Map阶段输出的key进行排序
Step 1: 定义FlowBean实现WritableComparable实现比较排序
Java 的 compareTo 方法说明:
- compareTo 方法用于将当前对象与方法的参数进行比较。
- 如果指定的数与参数相等返回 0。
- 如果指定的数小于参数返回 -1。
- 如果指定的数大于参数返回 1。
例如:o1.compareTo(o2);
返回正数的话,当前对象(调用 compareTo 方法的对象 o1)要排在比较对象(compareTo 传参对象 o2)后面,返回负数的话,放在前面
public class FlowBean implements WritableComparable<FlowBean> {
private Integer upFlow;
private Integer downFlow;
private Integer upCountFlow;
private Integer downCountFlow;
public FlowBean() {
}
public FlowBean(Integer upFlow, Integer downFlow, Integer upCountFlow, Integer downCountFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.upCountFlow = upCountFlow;
this.downCountFlow = downCountFlow;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeInt(upFlow);
out.writeInt(downFlow);
out.writeInt(upCountFlow);
out.writeInt(downCountFlow);
}
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readInt();
downFlow = in.readInt();
upCountFlow = in.readInt();
downCountFlow = in.readInt();
}
public Integer getUpFlow() {
return upFlow;
}
public void setUpFlow(Integer upFlow) {
this.upFlow = upFlow;
}
public Integer getDownFlow() {
return downFlow;
}
public void setDownFlow(Integer downFlow) {
this.downFlow = downFlow;
}
public Integer getUpCountFlow() {
return upCountFlow;
}
public void setUpCountFlow(Integer upCountFlow) {
this.upCountFlow = upCountFlow;
}
public Integer getDownCountFlow() {
return downCountFlow;
}
public void setDownCountFlow(Integer downCountFlow) {
this.downCountFlow = downCountFlow;
}
@Override
public String toString() {
return upFlow+"\t"+downFlow+"\t"+upCountFlow+"\t"+downCountFlow;
}
@Override
public int compareTo(FlowBean o) {
return this.upCountFlow > o.upCountFlow ?-1:1;
}
}
Step 2: 定义FlowMapper
public class FlowCountSortMapper extends Mapper<LongWritable,Text,FlowBean,Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
FlowBean flowBean = new FlowBean();
String[] split = value.toString().split("\t");
//获取手机号,作为V2
String phoneNum = split[0];
//获取其他流量字段,封装flowBean,作为K2
flowBean.setUpFlow(Integer.parseInt(split[1]));
flowBean.setDownFlow(Integer.parseInt(split[2]));
flowBean.setUpCountFlow(Integer.parseInt(split[3]));
flowBean.setDownCountFlow(Integer.parseInt(split[4]));
//将K2和V2写入上下文中
context.write(flowBean, new Text(phoneNum));
}
}
Step 3: 定义FlowReducer
public class FlowCountSortReducer extends Reducer<FlowBean,Text,Text,FlowBean> {
@Override
protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
for (Text value : values) {
context.write(value, key);
}
}
}
Step 4: 程序main函数入口
public class JobMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
//创建一个任务对象
Job job = Job.getInstance(super.getConf(), "mapreduce_flowcountsort");
//打包放在集群运行时,需要做一个配置
job.setJarByClass(JobMain.class);
//第一步:设置读取文件的类: K1 和V1
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/out/flowcount_out"));
//第二步:设置Mapper类
job.setMapperClass(FlowCountSortMapper.class);
//设置Map阶段的输出类型: k2 和V2的类型
job.setMapOutputKeyClass(FlowBean.class);
job.setMapOutputValueClass(Text.class);
//第三,四,五,六步采用默认方式(分区,排序,规约,分组)
//第七步 :设置文的Reducer类
job.setReducerClass(FlowCountSortReducer.class);
//设置Reduce阶段的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//设置Reduce的个数
//第八步:设置输出类
job.setOutputFormatClass(TextOutputFormat.class);
//设置输出的路径
TextOutputFormat.setOutputPath(job, new Path("hdfs://node01:8020/out/flowcountsort_out"));
boolean b = job.waitForCompletion(true);
return b?0:1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
//启动一个任务
int run = ToolRunner.run(configuration, new JobMain(), args);
System.exit(run);
}
}
运行结果:
需求三: 手机号码分区
在需求一的基础上,继续完善,将不同的手机号分到不同的数据文件的当中去,需要自定义分区来实现,这里我们自定义来模拟分区,将以下数字开头的手机号进行分开
135 开头数据到一个分区文件
136 开头数据到一个分区文件
137 开头数据到一个分区文件
其他分区
自定义分区
public class FlowPartition extends Partitioner<Text,FlowBean> {
@Override
public int getPartition(Text text, FlowBean flowBean, int i) {
String line = text.toString();
if (line.startsWith("135")){
return 0;
}else if(line.startsWith("136")){
return 1;
}else if(line.startsWith("137")){
return 2;
}else{
return 3;
}
}
}
作业运行设置
job.setPartitionerClass(FlowPartition.class);
job.setNumReduceTasks(4);
修改输入输出路径, 并放入集群运行
TextInputFormat.addInputPath(job,new Path("hdfs://node01:8020/partition_flow/"));
TextOutputFormat.setOutputPath(job,new Path("hdfs://node01:8020/partition_out"));
运行结果: