用户将TensorFlow训练网络迁移到昇腾平台后,如果存在性能不达标的问题,就需要进行调优。本文就带大家了解在昇腾平台上对TensorFlow训练网络进行性能调优的常用手段。

首先了解下性能调优的全流程:




tensorflow训练数据异步加载_昇腾CANN


当TensorFlow训练网络性能不达标时,首先可尝试昇腾平台提供的“三板斧”操作,即上图中的“基本提升手段”:使能自动混合精度 > 进行亲和接口的替换 > 使能训练迭代循环下沉 > 使用AOE工具进行调优。

基本调优操作完成后,需要再次执行模型训练并评估性能,如果性能达标了,调优即可结束;如果未达标,需要使用Profling工具采集详细的性能数据进一步分析,从而找到性能瓶颈点,并进一步针对性的解决,这部分调优操作需要用户有一定的经验,难度相对较大,我们将这部分调优操作称为进阶调优。

本文主要带大家详细了解基本调优操作,即上图中的灰色底纹部分。

使能自动混合精度

混合精度是业内通用的性能提升方式,通过降低部分计算精度提升数据计算的并行度。混合计算训练方法通过混合使用float16和float32数据类型来加速深度神经网络的训练过程,并减少内存使用和存取,从而可以提升训练网络性能,同时又能基本保证使用float32训练所能达到的网络精度。

Ascend平台提供了“precision_mode”参数用于配置网络的精度模式,用户可以在训练脚本的运行配置中添加此参数,并将取值配置为“allow_mix_precision”,从而使能自动混合精度,下面以手工迁移的训练脚本为例,介绍配置方法。

  • Estimator模式下,在NPURunConfig中添加precision_mode参数设置精度模式:
npu_config=NPURunConfig(
  model_dir=FLAGS.model_dir,
  save_checkpoints_steps=FLAGS.save_checkpoints_steps,  session_config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=False),
  precision_mode="allow_mix_precision"
  )

  • sess.run模式下,通过session配置项precision_mode设置精度模式:
config = tf.ConfigProto(allow_soft_placement=True)
custom_op =  config.graph_options.rewrite_options.custom_optimizers.add()
custom_op.name =  "NpuOptimizer" 
custom_op.parameter_map["use_off_line"].b = True
custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision")
…
with tf.Session(config=config) as sess:
  print(sess.run(cost))

亲和接口替换

针对TensorFlow训练网络中的dropout、gelu接口,Ascend平台提供了硬件亲和的替换接口,从而使网络获得更优性能。

  • 对于训练脚本中的tf.nn.dropout,建议替换为Ascend对应的API实现,以获得更优性能:
layers = npu_ops.dropout()
  • 若训练脚本中存在tf.layers.dropout、tf.layers.Dropout、tf.keras.layers.Dropout、tf.keras.layers.SpatialDropout1D、tf.keras.layers.SpatialDropout2D、tf.keras.layers.SpatialDropout3D接口,建议增加头文件引用:
from npu_bridge.estimator.npu import npu_convert_dropout
  • 对于训练脚本中的gelu接口,建议替换为Ascend提供的gelu接口,以获得更优性能。

例如,TensorFlow原始代码:

def gelu(x): 
  cdf = 0.5 * (1.0 + tf.tanh(
     (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) 
  return x*cdf
layers = gelu()

迁移后的代码:

from npu_bridge.estimator.npu_unary_ops import npu_unary_ops
layers = npu_unary_ops.gelu(x)

训练迭代循环下沉

训练迭代循环下沉是指在Host调用一次,在Device执行多次迭代,从而减少Host与Device间的交互次数,缩短训练时长。用户可通过iterations_per_loop参数指定训练迭代的次数,该参数取值大于1即可使能训练迭代循环下沉的特性。

使用该特性时,要求训练脚本使用TF Dataset方式读数据,并开启数据预处理下沉,即enable_data_pre_proc开关配置为True,例如sess.run配置示例如下:

custom_op.parameter_map["enable_data_pre_proc"].b = True

其他使用约束,用户可参见昇腾文档中心[1]的《TensorFlow模型迁移和训练指南》。

Estimator模式下,通过NPURunConfig中的iterations_per_loop参数配置训练迭代循环下沉的示例如下:

session_config=tf.ConfigProto(allow_soft_placement=True)
config = NPURunConfig(session_config=session_config, iterations_per_loop=10)

AOE自动调优

昇腾平台提供了AOE自动调优工具,可对网络进行子图调优、算子调优与梯度调优,生成最优调度策略,并将最优调度策略固化到知识库。模型再次训练时,无需开启调优,即可享受知识库带来的收益。

建议按照如下顺序使用AOE工具进行调优:


tensorflow训练数据异步加载_ai_02


训练场景下使能AOE调优有两种方式:

  • 通过设置环境变量启动AOE调优。
# 1:子图调优  
# 2:算子调优   
# 4:梯度调优
export AOE_MODE=2
  • 修改训练脚本,通过“aoe_mode”参数指定调优模式,例如:

sess.run模式,训练脚本修改方法如下:

custom_op.parameter_map["aoe_mode"].s = tf.compat.as_bytes("2")

estimator模式下,训练脚本修改方法如下:

config = NPURunConfig(
    session_config=session_config, 
    aoe_mode=2)