ClickHouse 是 Yandex(俄罗斯最大的搜索引擎)开源的一个用于实时数据分析的基于列存储的数据库,其处理数据的速度比传统方法快 100-1000 倍。

ClickHouse 的性能超过了目前市场上可比的面向列的 DBMS,每秒钟每台服务器每秒处理数亿至十亿多行和数十千兆字节的数据。

# ClickHouse 是什么?

ClickHouse 是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS)。

我们首先理清一些基础概念:

  • OLTP:是传统的关系型数据库,主要操作增删改查,强调事务一致性,比如银行系统、电商系统。
  • OLAP:是仓库型数据库,主要是读取数据,做复杂数据分析,侧重技术决策支持,提供直观简单的结果。

接着我们用图示,来理解一下列式数据库和行式数据库区别,在传统的行式数据库系统中(MySQL、Postgres 和 MS SQL Server),数据按如下顺序存储:

clickhouse 和hbase的使用场景 clickhouse hologres_MySQL

在列式数据库系统中(ClickHouse),数据按如下的顺序存储:

clickhouse 和hbase的使用场景 clickhouse hologres_数据_02

两者在存储方式上对比:

clickhouse 和hbase的使用场景 clickhouse hologres_数据库_03

 

ClickHouse 为什么快?
有如下几点:
  • 只需要读取要计算的列数据,而非行式的整行数据读取,降低 IO cost。
  • 同列同类型,有十倍压缩提升,进一步降低 IO。
  • Clickhouse 根据不同存储场景,做个性化搜索算法。

 

ClickHouse 与 MySQL 数据类型差异性

用 MySQL 的语句查询,发现报错:

clickhouse 和hbase的使用场景 clickhouse hologres_数据库_04

解决方案:LEFT JOIN B b ON toUInt32(h.id) = toUInt32(ec.post_id),中转一下,统一无符号类型关联

②删除或更新是异步执行,只保证最终一致性

查询 CK 手册发现,即便对数据一致性支持最好的 Mergetree,也只是保证最终一致性:

clickhouse 和hbase的使用场景 clickhouse hologres_MySQL_05

如果对数据一致性要求较高,推荐大家做全量同步来解决。

# 总结

通过 ClickHouse 实践,完美的解决了 MySQL 查询瓶颈,20 亿行以下数据量级查询,90% 都可以在 1s 内给到结果,随着数据量增加,ClickHouse 同样也支持集群,大家如果感兴趣,可以积极尝试!

以上是 ClickHouse 基本介绍