例子1:时间序列数据(股票价格)
对于如下的收盘价序列数据:



时间序列   日期  收盘价
1  2013-10-01  10
2  2013-10-02  18
3  2013-10-03  20
4  2013-10-04  30
5  2013-10-07  24
6  2013-10-08  33
7  2013-10-09  27



要计算3天的移动平均数

时间序列   日期  移动平均    如何计算
1  2013-10-01  10.00   =(10)/(1)
2  2013-10-02  14.00   = (10+18)/(2)
3  2013-10-03  16.00   =(10+18+20)/(3)
4  2013-10-04  22.66   =(18+20+30)/(4)


例子2:时间序列数据(URL访问数)
计算一个特定时间窗口内各个日期访问不同URL的不同访问者人数的移动平均数。

URL    日期  不同访问者人数
------------------------
URL1   2013-10-01  400
URL1   2013-10-02  200
URL1   2013-10-03  300
URL1   2013-10-04  700
URL1   2013-10-05  800
URL2   2013-10-01  10

3天的URL访问数的移动平均数
URL    日期  移动平均数
-----------------------
URL1   2013-10-01  400
URL1   2013-10-02  200
URL1   2013-10-03  300
URL1   2013-10-04  700
URL1   2013-10-05  800
URL2   2013-10-01  10


一、POJO移动平均解决方案
解决方案1:使用队列
维护一个特定窗口大小的队列和一个累加和sum
对于每一个元素,先将其值累加到sum中并将其加入队尾
如果加入该元素后队列的大小没有超过特定窗口大小,则继续处理下一个元素
如果加入该元素后队列的大小超过了特定窗口大小,则将队首元素移除,【同时将sum减去队首元素的值】,这样可以保证累加和进行滑动
...
移动平均的计算,当队列不为空时,移动平均=累加和/队列大小



package yidongpingjun.pojo;

import java.util.Queue;
import java.util.LinkedList;

/** 
 * Simple moving average by using a queue data structure.
 *
 * @author Mahmoud Parsian
 *
 */
public class SimpleMovingAverage {

    private double sum = 0.0;
    private final int period;
    private final Queue<Double> window = new LinkedList<Double>();
 
    public SimpleMovingAverage(int period) {
        if (period < 1) {
           throw new IllegalArgumentException("period must be > 0");
        }
        this.period = period;
    }
 
    public void addNewNumber(double number) {
        sum += number;
        window.add(number);
        if (window.size() > period) {
            sum -= window.remove();
        }
    }
 
    public double getMovingAverage() {
        if (window.isEmpty()) {
            throw new IllegalArgumentException("average is undefined");
        }
        return sum / window.size();
    }
}



解决方案2:使用数组
使用一个简单数组模拟入队和出队操作。但因为使用Java的队列数据结构时使用到了链表,没有使用数组直接存取高效
需要定义一个变量作为类似指针,记录队首的位置。



package yidongpingjun.pojo;

/** 
 * Simple moving average by using an array data structure.
 *
 * @author Mahmoud Parsian
 *
 */
public class SimpleMovingAverageUsingArray {

    private double sum = 0.0;
    private final int period;
    private double[] window = null;
    private int pointer = 0;
    private int size = 0;
 
    public SimpleMovingAverageUsingArray(int period) {
        if (period < 1) {
           throw new IllegalArgumentException("period must be > 0");
        }
        this.period = period;
        window = new double[period];
    }
 
    public void addNewNumber(double number) {
        sum += number;
        if (size < period) {
            window[pointer++] = number;
            size++;
        }
        else {
            // size = period (size cannot be > period)
            pointer = pointer % period;
            sum -=  window[pointer];
            window[pointer++] = number;
        }
    }
 
    public double getMovingAverage() {
        if (size == 0) {
            throw new IllegalArgumentException("average is undefined");
        }
        return sum / size;
    }
}



测试主程序:

package yidongpingjun.pojo;

import org.apache.log4j.Logger;
import org.apache.log4j.BasicConfigurator;

/** 
 * Basic testing of Simple moving average.
 *
 * @author Mahmoud Parsian
 *
 */
public class TestSimpleMovingAverage { 

    private static final Logger THE_LOGGER = Logger.getLogger(TestSimpleMovingAverage.class);

    public static void main(String[] args) {
        // The invocation of the BasicConfigurator.configure method 
        // creates a rather simple log4j setup. This method is hardwired 
        // to add to the root logger a ConsoleAppender.
        BasicConfigurator.configure();
        
        // time series        1   2   3  4   5   6   7
        double[] testData = {10, 18, 20, 30, 24, 33, 27};
        int[] allWindowSizes = {3, 4};
        for (int windowSize : allWindowSizes) {
            SimpleMovingAverage sma = new SimpleMovingAverage(windowSize);
            THE_LOGGER.info("windowSize = " + windowSize);
            for (double x : testData) {
                sma.addNewNumber(x);
                THE_LOGGER.info("Next number = " + x + ", SMA = " + sma.getMovingAverage());
            }
            THE_LOGGER.info("---");
        }
    }
}



二、MapReduce/Hadoop移动平均解决方案
输入:<name-as-string><,><date-as-timestamp><,><value-as-double>
GOOD,2004-11-04,184.70
GOOD,2014-11-03,191.67
GOOD,2014-11-02,194.87
AAPL,2013-10-09,486.59
AAPL,2013-10-08,480.94
AAPL,2013-10-07,487.75
AAPL,2013-10-04,483.03
AAPL,2013-10-03,483.41
IBM,2013-09-30,185.18
IBM,2013-09-27,186.92
IBM,2013-09-26,190.22
IBM,2013-09-25,189.47
GOOD,2013-07-19,896.60
GOOD,2013-07-19,910.68
GOOD,2013-07-17,918.55


输出:<name-as-string><,><date-as-timestamp><,><moving-average-as-double>


只需要根据股票代码对数据分组,然后按时间戳对这些值排序,然后应用移动平均算法。
对时间序列数据进行排序至少有两种方法:
解决方案1:在内存中排序
新建一个数据结构TimeSeriesData,将时间date和收盘价value绑定在一起
先对每一行做map操作,将其映射为(name,新建一个数据结构TimeSeriesData)的键值对
reduce操作中,所有name相同的键值对会到达同一个reduce,其key为name,value为无序的TimeSeriesData集合,在这里将这个集合在内存中进行按时间排序
然后对排序后的集合进行移动平均,生成key为股票代码,value为时间和移动平均的键值对集合,并写入输出文件中



package yidongpingjun;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.text.SimpleDateFormat;
import org.apache.hadoop.io.Writable;


/**
 * 
 * TimeSeriesData represents a pair of 
 *  (time-series-timestamp, time-series-value).
 *  
 * @author Mahmoud Parsian
 *
 */
public class TimeSeriesData 
   implements Writable, Comparable<TimeSeriesData> {

	private long timestamp;
	private double value;
	
	public static TimeSeriesData copy(TimeSeriesData tsd) {
		return new TimeSeriesData(tsd.timestamp, tsd.value);
	}
	
	public TimeSeriesData(long timestamp, double value) {
		set(timestamp, value);
	}
	
	public TimeSeriesData() {
	}
	
	public void set(long timestamp, double value) {
		this.timestamp = timestamp;
		this.value = value;
	}	
	
	public long getTimestamp() {
		return this.timestamp;
	}
	
	public double getValue() {
		return this.value;
	}
	
	/**
	 * Deserializes the point from the underlying data.
	 * @param in a DataInput object to read the point from.
	 */
	public void readFields(DataInput in) throws IOException {
		this.timestamp  = in.readLong();
		this.value  = in.readDouble();
	}

	/**
	 * Convert a binary data into TimeSeriesData
	 * 
	 * @param in A DataInput object to read from.
	 * @return A TimeSeriesData object
	 * @throws IOException
	 */
	public static TimeSeriesData read(DataInput in) throws IOException {
		TimeSeriesData tsData = new TimeSeriesData();
		tsData.readFields(in);
		return tsData;
	}

	public String getDate() {
		return DateUtil.getDateAsString(this.timestamp);	
	}

   /**
    * Creates a clone of this object
    */
    public TimeSeriesData clone() {
       return new TimeSeriesData(timestamp, value);
    }

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(this.timestamp );
		out.writeDouble(this.value );

	}

	/**
	 * Used in sorting the data in the reducer
	 */
	@Override
	public int compareTo(TimeSeriesData data) {
		if (this.timestamp  < data.timestamp ) {
			return -1;
		} 
		else if (this.timestamp  > data.timestamp ) {
			return 1;
		}
		else {
		   return 0;
		}
	}
	
	public String toString() {
       return "("+timestamp+","+value+")";
    }
}




package yidongpingjun.memorysort;

import java.util.Date;
import java.io.IOException;


import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.commons.lang.StringUtils;
import yidongpingjun.DateUtil;
import yidongpingjun.TimeSeriesData;

/***
 * 
 * @author chenjie
 *输入:
 *GOOG,2004-11-04,184.70
    GOOG,2004-11-03,191.67
    GOOG,2004-11-02,194.87
    AAPL,2013-10-09,486.59
    AAPL,2013-10-08,480.94
    AAPL,2013-10-07,487.75
    AAPL,2013-10-04,483.03
    AAPL,2013-10-03,483.41
    IBM,2013-09-30,185.18
    IBM,2013-09-27,186.92
    IBM,2013-09-26,190.22
    IBM,2013-09-25,189.47
    GOOG,2013-07-19,896.60
    GOOG,2013-07-18,910.68
    GOOG,2013-07-17,918.55
 *
 *
 */
public class SortInMemory_MovingAverageMapper    
    extends Mapper<LongWritable, Text, Text, TimeSeriesData> {
 
   private final Text reducerKey = new Text();
   private final TimeSeriesData reducerValue = new TimeSeriesData();
   
   
   /**
    * value:GOOG,2004-11-04,184.70
    */
   public void map(LongWritable key, Text value, Context context)
       throws IOException, InterruptedException {
       String record = value.toString();
       if ((record == null) || (record.length() == 0)) {
          return;
       }
       String[] tokens = StringUtils.split(record.trim(), ",");
       if (tokens.length == 3) {
          Date date = DateUtil.getDate(tokens[1]);//2004-11-04,
          if (date == null) {
          	 return;
          }
          reducerKey.set(tokens[0]); // GOOG
          reducerValue.set(date.getTime(), Double.parseDouble(tokens[2]));
          context.write(reducerKey, reducerValue);
       }
       else {
          // log as error, not enough tokens
       }
   }
}



package yidongpingjun.memorysort;

import java.io.IOException;
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;


//
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
//


import yidongpingjun.DateUtil;
import yidongpingjun.TimeSeriesData;


public class SortInMemory_MovingAverageReducer 
   extends Reducer<Text, TimeSeriesData, Text, Text> {

    int windowSize = 5; // default window size
   
	/**
	 *  will be run only once 
	 *  get parameters from Hadoop's configuration
	 */
	public void setup(Context context)
        throws IOException, InterruptedException {
        this.windowSize = context.getConfiguration().getInt("moving.average.window.size", 5);
        System.out.println("setup(): key="+windowSize);
    }

	public void reduce(Text key, Iterable<TimeSeriesData> values, Context context)	
		throws IOException, InterruptedException {
       
        System.out.println("reduce(): key="+key.toString());

		// build the unsorted list of timeseries
		List<TimeSeriesData> timeseries = new ArrayList<TimeSeriesData>();
		for (TimeSeriesData tsData : values) {
			TimeSeriesData copy = TimeSeriesData.copy(tsData);
			timeseries.add(copy);
		} 
		
		// sort the timeseries data in memory and
        // apply moving average algorithm to sorted timeseries
        Collections.sort(timeseries);
        System.out.println("reduce(): timeseries="+timeseries.toString());
        
        
        // calculate prefix sum
        double sum = 0.0;
        for (int i=0; i < windowSize-1; i++) {
        	sum += timeseries.get(i).getValue();
        }
        
        // now we have enough timeseries data to calculate moving average
		Text outputValue = new Text(); // reuse object
        for (int i = windowSize-1; i < timeseries.size(); i++) {
            System.out.println("reduce(): key="+key.toString() + "  i="+i);
        	sum += timeseries.get(i).getValue();
        	double movingAverage = sum / windowSize;
        	long timestamp = timeseries.get(i).getTimestamp();
        	outputValue.set(DateUtil.getDateAsString(timestamp) + "," + movingAverage);
        	// send output to HDFS
        	context.write(key, outputValue);
        	
        	// prepare for next iteration
        	sum -= timeseries.get(i-windowSize+1).getValue();
        }
	} // reduce

}




测试驱动类

package yidongpingjun.memorysort;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
//



import yidongpingjun.HadoopUtil;
import yidongpingjun.TimeSeriesData;

/**
 * MapReduce job for moving averages of time series data 
 * by using in memory sort (without secondary sort).
 *
 * @author Mahmoud Parsian
 *
 */
public class SortInMemory_MovingAverageDriver {
 
    private static final String INPATH = "input/gupiao1.txt";// 输入文件路径
    private static final String OUTPATH = "output/gupiao1";// 输出文件路径
    
    public static void main(String[] args) throws Exception {
       Configuration conf = new Configuration();
       String[] otherArgs = new String[3];
       otherArgs[0] = "2";
       otherArgs[1] = INPATH;
       otherArgs[2] = OUTPATH;
       if (otherArgs.length != 3) {
          System.err.println("Usage: SortInMemory_MovingAverageDriver <window_size> <input> <output>");
          System.exit(1);
       }
       System.out.println("args[0]: <window_size>="+otherArgs[0]);
       System.out.println("args[1]: <input>="+otherArgs[1]);
       System.out.println("args[2]: <output>="+otherArgs[2]);
       
       Job job = new Job(conf, "SortInMemory_MovingAverageDriver");

       // add jars to distributed cache
     //  HadoopUtil.addJarsToDistributedCache(job, "/lib/");
       
       // set mapper/reducer
       job.setMapperClass(SortInMemory_MovingAverageMapper.class);
       job.setReducerClass(SortInMemory_MovingAverageReducer.class);
       
       // define mapper's output key-value
       job.setMapOutputKeyClass(Text.class);
       job.setMapOutputValueClass(TimeSeriesData.class);
              
       // define reducer's output key-value
       job.setOutputKeyClass(Text.class);
       job.setOutputValueClass(Text.class);
       
       // set window size for moving average calculation
       int windowSize = Integer.parseInt(otherArgs[0]);
       job.getConfiguration().setInt("moving.average.window.size", windowSize);      
       
       // define I/O
       FileInputFormat.addInputPath(job, new Path(otherArgs[1]));
       FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
       
       job.setInputFormatClass(TextInputFormat.class); 
       job.setOutputFormatClass(TextOutputFormat.class);
       
       System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

}




输出结果:


AAPL 2013-10-04,483.22 AAPL 2013-10-07,485.39 AAPL 2013-10-08,484.345 AAPL 2013-10-09,483.765 GOOG 2004-11-03,193.26999999999998 GOOG 2004-11-04,188.18499999999997 GOOG 2013-07-17,551.625 GOOG 2013-07-18,914.615 GOOG 2013-07-19,903.6400000000001 IBM 2013-09-26,189.845 IBM 2013-09-27,188.57 IBM 2013-09-30,186.05



解决方案2:使用MapReduce框架排序(二次排序),使用股票名词和时间戳构成组合键,按股票名称进行分组,按照股票名称和时间戳排序。
新建一个数据结构TimeSeriesData,将时间date和收盘价value绑定在一起
新建一个数据结构CompositeKey,作为组合键,将股票代码和时间绑定在一起
映射器类SortByMRF_MovingAverageMapper,将输入【股票代码,时间,收盘价】映射为key为CompositeKey,value为TimeSeriesData的键值对
既然key和value都变为了自定义复杂类型,那么如何根据key进行分区和排序,如何根据value进行排序,都需要自己定义
于是,新建一个数据结构CompositeKeyComparator,定义key如何进行排序:先按CompositeKey的股票代码进行排序,再按时间进行排序
新建一个数据结构NaturalKeyPartitioner,定义key如何进行分区:按照CompositeKey的股票代码进行分区,使得股票代码相同的记录能够到达同一个规约器reducer
新建一个数据结构NaturalKeyGroupingComparator,定义key如何进行分组:按照CompositeKey的股票代码进行分组
新建一个数据结构SortByMRF_MovingAverageReducer,定义如何进行规约:对于key为CompositeKey,value为根据时间排序的有序TimeSeriesData集合,计算移动平均



package yidongpingjun;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.text.SimpleDateFormat;
import org.apache.hadoop.io.Writable;


public class TimeSeriesData 
   implements Writable, Comparable<TimeSeriesData> {

	private long timestamp;
	private double value;
	
	public static TimeSeriesData copy(TimeSeriesData tsd) {
		return new TimeSeriesData(tsd.timestamp, tsd.value);
	}
	
	public TimeSeriesData(long timestamp, double value) {
		set(timestamp, value);
	}
	
	public TimeSeriesData() {
	}
	
	public void set(long timestamp, double value) {
		this.timestamp = timestamp;
		this.value = value;
	}	
	
	public long getTimestamp() {
		return this.timestamp;
	}
	
	public double getValue() {
		return this.value;
	}
	
	/**
	 * Deserializes the point from the underlying data.
	 * @param in a DataInput object to read the point from.
	 */
	public void readFields(DataInput in) throws IOException {
		this.timestamp  = in.readLong();
		this.value  = in.readDouble();
	}

	/**
	 * Convert a binary data into TimeSeriesData
	 * 
	 * @param in A DataInput object to read from.
	 * @return A TimeSeriesData object
	 * @throws IOException
	 */
	public static TimeSeriesData read(DataInput in) throws IOException {
		TimeSeriesData tsData = new TimeSeriesData();
		tsData.readFields(in);
		return tsData;
	}

	public String getDate() {
		return DateUtil.getDateAsString(this.timestamp);	
	}

   /**
    * Creates a clone of this object
    */
    public TimeSeriesData clone() {
       return new TimeSeriesData(timestamp, value);
    }

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(this.timestamp );
		out.writeDouble(this.value );

	}

	/**
	 * Used in sorting the data in the reducer
	 */
	@Override
	public int compareTo(TimeSeriesData data) {
		if (this.timestamp  < data.timestamp ) {
			return -1;
		} 
		else if (this.timestamp  > data.timestamp ) {
			return 1;
		}
		else {
		   return 0;
		}
	}
	
	public String toString() {
       return "("+timestamp+","+value+")";
    }
}



package yidongpingjun.secondarysort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;


public class CompositeKey implements WritableComparable<CompositeKey> {
    // natural key is (name)
    // composite key is a pair (name, timestamp)
	private String name;
	private long timestamp;

	public CompositeKey(String name, long timestamp) {
		set(name, timestamp);
	}
	
	public CompositeKey() {
	}

	public void set(String name, long timestamp) {
		this.name = name;
		this.timestamp = timestamp;
	}

	public String getName() {
		return this.name;
	}

	public long getTimestamp() {
		return this.timestamp;
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		this.name = in.readUTF();
		this.timestamp = in.readLong();
	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeUTF(this.name);
		out.writeLong(this.timestamp);
	}

	@Override
	public int compareTo(CompositeKey other) {
		if (this.name.compareTo(other.name) != 0) {
			return this.name.compareTo(other.name);
		} 
		else if (this.timestamp != other.timestamp) {
			return timestamp < other.timestamp ? -1 : 1;
		} 
		else {
			return 0;
		}

	}

	public static class CompositeKeyComparator extends WritableComparator {
		public CompositeKeyComparator() {
			super(CompositeKey.class);
		}

		public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
			return compareBytes(b1, s1, l1, b2, s2, l2);
		}
	}

	static { // register this comparator
		WritableComparator.define(CompositeKey.class,
				new CompositeKeyComparator());
	}

}




package yidongpingjun.secondarysort;

import java.util.Date;
import java.io.IOException;


//
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.commons.lang.StringUtils;
//


import yidongpingjun.DateUtil;
import yidongpingjun.TimeSeriesData;


public class SortByMRF_MovingAverageMapper extends MapReduceBase
        implements Mapper<LongWritable, Text, CompositeKey, TimeSeriesData> {

    // reuse Hadoop's Writable objects
    private final CompositeKey reducerKey = new CompositeKey();
    private final TimeSeriesData reducerValue = new TimeSeriesData();

    @Override
    public void map(LongWritable inkey, Text value,
            OutputCollector<CompositeKey, TimeSeriesData> output,
            Reporter reporter) throws IOException {
        String record = value.toString();
        if ((record == null) || (record.length() == 0)) {
            return;
        }
        String[] tokens = StringUtils.split(record, ",");
        if (tokens.length == 3) {
            // tokens[0] = name of timeseries as string
            // tokens[1] = timestamp
            // tokens[2] = value of timeseries as double
            Date date = DateUtil.getDate(tokens[1]);
            if (date == null) {
                return;
            }
            long timestamp = date.getTime();
            reducerKey.set(tokens[0], timestamp);
            reducerValue.set(timestamp, Double.parseDouble(tokens[2]));
            // emit key-value pair
            output.collect(reducerKey, reducerValue);
        } 
        else {
            // log as error, not enough tokens
        }
    }
}




package yidongpingjun.secondarysort;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;


public class CompositeKeyComparator extends WritableComparator {

    protected CompositeKeyComparator() {
        super(CompositeKey.class, true);
    }

    @Override
    public int compare(WritableComparable w1, WritableComparable w2) {
        CompositeKey key1 = (CompositeKey) w1;
        CompositeKey key2 = (CompositeKey) w2;

        int comparison = key1.getName().compareTo(key2.getName());
        if (comparison == 0) {
            // names are equal here
            if (key1.getTimestamp() == key2.getTimestamp()) {
                return 0;
            } else if (key1.getTimestamp() < key2.getTimestamp()) {
                return -1;
            } else {
                return 1;
            }
        } 
        else {
            return comparison;
        }
    }
}



package yidongpingjun.secondarysort;

import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.Partitioner;

import yidongpingjun.TimeSeriesData;


public class NaturalKeyPartitioner implements
        Partitioner<CompositeKey, TimeSeriesData> {

    @Override
    public int getPartition(CompositeKey key,
            TimeSeriesData value,
            int numberOfPartitions) {
        return Math.abs((int) (hash(key.getName()) % numberOfPartitions));
    }

    @Override
    public void configure(JobConf jobconf) {
    }

    /**
     * adapted from String.hashCode()
     */
    static long hash(String str) {
        long h = 1125899906842597L; // prime
        int length = str.length();
        for (int i = 0; i < length; i++) {
            h = 31 * h + str.charAt(i);
        }
        return h;
    }
}





package yidongpingjun.secondarysort;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;


public class NaturalKeyGroupingComparator extends WritableComparator {

    protected NaturalKeyGroupingComparator() {
        super(CompositeKey.class, true);
    }

    @Override
    public int compare(WritableComparable w1, WritableComparable w2) {
        CompositeKey key1 = (CompositeKey) w1;
        CompositeKey key2 = (CompositeKey) w2;
        return key1.getName().compareTo(key2.getName());
    }

}




package yidongpingjun.secondarysort;

import java.util.Iterator;
import java.io.IOException;


//
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.JobConf;
//


import yidongpingjun.DateUtil;
import yidongpingjun.TimeSeriesData;


public class SortByMRF_MovingAverageReducer extends MapReduceBase
        implements Reducer<CompositeKey, TimeSeriesData, Text, Text> {

    int windowSize = 5; // default window size

    /**
     * will be run only once get parameters from Hadoop's configuration
     */
    @Override
    public void configure(JobConf jobconf) {
        this.windowSize = jobconf.getInt("moving.average.window.size", 5);
    }

    @Override
    public void reduce(CompositeKey key,
            Iterator<TimeSeriesData> values,
            OutputCollector<Text, Text> output,
            Reporter reporter)
            throws IOException {

        // note that values are sorted.
        // apply moving average algorithm to sorted timeseries
        Text outputKey = new Text();
        Text outputValue = new Text();
        MovingAverage ma = new MovingAverage(this.windowSize);
        while (values.hasNext()) {
            TimeSeriesData data = values.next();
            ma.addNewNumber(data.getValue());
            double movingAverage = ma.getMovingAverage();
            long timestamp = data.getTimestamp();
            String dateAsString = DateUtil.getDateAsString(timestamp);
            //THE_LOGGER.info("Next number = " + x + ", SMA = " + sma.getMovingAverage());
            outputValue.set(dateAsString + "," + movingAverage);
            outputKey.set(key.getName());
            output.collect(outputKey, outputValue);
        }
        //
    } 

}



package yidongpingjun.secondarysort;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobClient;
//




import yidongpingjun.HadoopUtil;
import yidongpingjun.TimeSeriesData;


public class SortByMRF_MovingAverageDriver {
    private static final String INPATH = "input/gupiao1.txt";// 输入文件路径
    private static final String OUTPATH = "output/gupiao2";// 输出文件路径
    
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
		JobConf jobconf = new JobConf(conf, SortByMRF_MovingAverageDriver.class);
		jobconf.setJobName("SortByMRF_MovingAverageDriver");
    
		String[] otherArgs = new String[3];
	       otherArgs[0] = "2";
	       otherArgs[1] = INPATH;
	       otherArgs[2] = OUTPATH;
       if (otherArgs.length != 3) {
          System.err.println("Usage: SortByMRF_MovingAverageDriver <window_size> <input> <output>");
          System.exit(1);
       }

       // add jars to distributed cache
     //  HadoopUtil.addJarsToDistributedCache(conf, "/lib/");
       
       // set mapper/reducer
       jobconf.setMapperClass(SortByMRF_MovingAverageMapper.class);
       jobconf.setReducerClass(SortByMRF_MovingAverageReducer.class);
       
       // define mapper's output key-value
       jobconf.setMapOutputKeyClass(CompositeKey.class);
       jobconf.setMapOutputValueClass(TimeSeriesData.class);
              
       // define reducer's output key-value
       jobconf.setOutputKeyClass(Text.class);
       jobconf.setOutputValueClass(Text.class);

       // set window size for moving average calculation
       int windowSize = Integer.parseInt(otherArgs[0]);
       jobconf.setInt("moving.average.window.size", windowSize);      
       
       // define I/O
	   FileInputFormat.setInputPaths(jobconf, new Path(otherArgs[1]));
	   FileOutputFormat.setOutputPath(jobconf, new Path(otherArgs[2]));
       
       jobconf.setInputFormat(TextInputFormat.class); 
       jobconf.setOutputFormat(TextOutputFormat.class);
	   jobconf.setCompressMapOutput(true);       
       
       // the following 3 setting are needed for "secondary sorting"
       // Partitioner decides which mapper output goes to which reducer 
       // based on mapper output key. In general, different key is in 
       // different group (Iterator at the reducer side). But sometimes, 
       // we want different key in the same group. This is the time for 
       // Output Value Grouping Comparator, which is used to group mapper 
       // output (similar to group by condition in SQL).  The Output Key 
       // Comparator is used during sort stage for the mapper output key.
       jobconf.setPartitionerClass(NaturalKeyPartitioner.class);
       jobconf.setOutputKeyComparatorClass(CompositeKeyComparator.class);
       jobconf.setOutputValueGroupingComparator(NaturalKeyGroupingComparator.class);
       
       JobClient.runJob(jobconf);
    }

}




package yidongpingjun;

import java.text.SimpleDateFormat;
import java.util.Date;


public class DateUtil {

	static final String DATE_FORMAT = "yyyy-MM-dd";
	static final SimpleDateFormat SIMPLE_DATE_FORMAT = 
	   new SimpleDateFormat(DATE_FORMAT);

    /**
     *  Returns the Date from a given dateAsString
     */
	public static Date getDate(String dateAsString)  {
        try {
        	return SIMPLE_DATE_FORMAT.parse(dateAsString);
        }
        catch(Exception e) {
        	return null;
        }
	}

    /**
     *  Returns the number of milliseconds since January 1, 1970, 
     *  00:00:00 GMT represented by this Date object.
     */
	public static long getDateAsMilliSeconds(Date date) throws Exception {
        return date.getTime();
	}
	
	
    /**
     *  Returns the number of milliseconds since January 1, 1970, 
     *  00:00:00 GMT represented by this Date object.
     */
	public static long getDateAsMilliSeconds(String dateAsString) throws Exception {
		Date date = getDate(dateAsString);	
        return date.getTime();
	}
	
	
	
	
	public static String getDateAsString(long timestamp) {
        return SIMPLE_DATE_FORMAT.format(timestamp);
	}	
	
}



package yidongpingjun;

import java.util.List;
import java.util.ArrayList;
import java.util.Arrays;
import java.io.IOException;
//
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.filecache.DistributedCache;




public class HadoopUtil {

   /**
    * Add all jar files to HDFS's distributed cache
    *
    * @param job job which will be run
    * @param hdfsJarDirectory a directory which has all required jar files
    */ 
   public static void addJarsToDistributedCache(Job job, 
                                                String hdfsJarDirectory) 
      throws IOException {
      if (job == null) {
         return;
      }
      addJarsToDistributedCache(job.getConfiguration(), hdfsJarDirectory);
   }

   /**
    * Add all jar files to HDFS's distributed cache
    *
    * @param Configuration conf which will be run
    * @param hdfsJarDirectory a directory which has all required jar files
    */ 
   public static void addJarsToDistributedCache(Configuration conf, 
                                                String hdfsJarDirectory) 
      throws IOException {
      if (conf == null) {
         return;
      }
      FileSystem fs = FileSystem.get(conf);
      List<FileStatus> jars = getDirectoryListing(hdfsJarDirectory, fs);
      for (FileStatus jar : jars) {
         Path jarPath = jar.getPath();
         DistributedCache.addFileToClassPath(jarPath, conf, fs);
      }
   }

   
   /**
    * Get list of files from a given HDFS directory
    * @param directory an HDFS directory name
    * @param fs an HDFS FileSystem
    */   
    public static List<FileStatus> getDirectoryListing(String directory, 
                                                       FileSystem fs) 
       throws IOException {
       Path dir = new Path(directory); 
       FileStatus[] fstatus = fs.listStatus(dir); 
       return Arrays.asList(fstatus);
    }
    
    public static List<String> listDirectoryAsListOfString(String directory, 
                                                           FileSystem fs) 
       throws IOException {
       Path path = new Path(directory); 
       FileStatus fstatus[] = fs.listStatus(path);
       List<String> listing = new ArrayList<String>();
       for (FileStatus f: fstatus) {
           listing.add(f.getPath().toUri().getPath());
       }
       return listing;
    }
    
    
   /**
    * Return true, if HDFS path doers exist; otherwise return false.
    * 
    */
   public static boolean pathExists(Path path, FileSystem fs)  {
      if (path == null) {
         return false;
      }
      
      try {
         return fs.exists(path);
      }
      catch(Exception e) {
          return false;
      }
   }   
   
}