1、最大似然估计MLE(maximum likelihood estimation)

最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。

首先回顾一下贝叶斯公式



这个公式也称为逆概率公式,可以将后验概率转化为基于似然函数和先验概率的计算表达式,即



最大似然估计就是要用似然函数取到最大值时的参数值作为估计值,似然函数可以写做



由于有连乘运算,通常对似然函数取对数计算简便,即对数似然函数。最大似然估计问题可以写成



这是一个关于的函数,求解这个优化问题通常对求导,得到导数为0的极值点。该函数取得最大值是对应的的取值就是我们估计的模型参数。

以扔硬币的伯努利实验为例子,N次实验的结果服从二项分布,参数为P,即每次实验事件发生的概率,不妨设为是得到正面的概率。为了估计P,采用最大似然估计,似然函数可以写作



其中表示实验结果为i的次数。下面求似然函数的极值点,有



得到参数p的最大似然估计值为



可以看出二项分布中每次事件发的概率p就等于做N次独立重复随机试验中事件发生的概率。

如果我们做20次实验,出现正面12次,反面8次

那么根据最大似然估计得到参数值p为12/20 = 0.6。

2、最大后验估计MAP


最大后验估计与最大似然估计相似,不同点在于估计的函数中允许加入一个先验,也就是说此时不是要求似然函数最大,而是要求由贝叶斯公式计算出的整个后验概率最大,即



注意这里P(X)与参数无关,因此等价于要使分子最大。与最大似然估计相比,现在需要多加上一个先验分布概率的对数。在实际应用中,这个先验可以用来描述人们已经知道或者接受的普遍规律。例如在扔硬币的试验中,每次抛出正面发生的概率应该服从一个概率分布,这个概率在0.5处取得最大值,这个分布就是先验分布。先验分布的参数我们称为超参数(hyperparameter)即



同样的道理,当上述后验概率取得最大值时,我们就得到根据MAP估计出的参数值。给定观测到的样本数据,一个新的值发生的概率是



下面我们仍然以扔硬币的例子来说明,我们期望先验概率分布在0.5处取得最大值,我们可以选用Beta分布即



其中Beta函数展开是



当x为正整数时



Beta分布的随机变量范围是[0,1],所以可以生成normalised probability values。下图给出了不同参数情况下的Beta分布的概率密度函数

最大似然估计双参数python 最大似然法估计参数_最大似然估计双参数python

我们取,这样先验分布在0.5处取得最大值,现在我们来求解MAP估计函数的极值点,同样对p求导数我们有



得到参数p的的最大后验估计值为



和最大似然估计的结果对比可以发现结果中多了这样的pseudo-counts,这就是先验在起作用。并且超参数越大,为了改变先验分布传递的belief所需要的观察值就越多,此时对应的Beta函数越聚集,紧缩在其最大值两侧。

如果我们做20次实验,出现正面12次,反面8次,那么根据MAP估计出来的参数p为16/28 = 0.571,小于最大似然估计得到的值0.6,这也显示了“硬币一般是两面均匀的”这一先验对参数估计的影响。

3、MLE与MAP比较的例子

假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是

    樱桃 100%

    樱桃 75% + 柠檬 25%

    樱桃 50% + 柠檬 50%

    樱桃 25% + 柠檬 75%

    柠檬 100%

  如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个?

我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作

  

最大似然估计双参数python 最大似然法估计参数_机器学习_02

  由于p的取值是一个离散值,即上面描述中的0,25%,50%,75%,1。我们只需要评估一下这五个值哪个值使得似然函数最大即可,得到为袋子5。这里便是最大似然估计的结果。

上述最大似然估计有一个问题,就是没有考虑到模型本身的概率分布,下面我们扩展这个饼干的问题。

假设拿到袋子1或5的机率都是0.1,拿到2或4的机率都是0.2,拿到3的机率是0.4,那同样上述问题的答案呢?这个时候就变MAP了。我们根据公式

  

最大似然估计双参数python 最大似然法估计参数_最大似然估计双参数python_03

写出我们的MAP函数。

  

最大似然估计双参数python 最大似然法估计参数_算法_04

根据题意的描述可知,p的取值分别为0,25%,50%,75%,1,g的取值分别为0.1,0.2,0.4,0.2,0.1.分别计算出MAP函数的结果为:0,0.0125,0.125,0.28125,0.1.由上可知,通过MAP估计可得结果是从第四个袋子中取得的最高。

4、 贝叶斯估计

贝叶斯估计是在MAP上做进一步拓展,此时不直接估计参数的值,而是允许参数服从一定概率分布。回顾一下贝叶斯公式



现在不是要求后验概率最大,这样就需要求,即观察到的evidence的概率,由全概率公式展开可得



当新的数据被观察到时,后验概率可以自动随之调整。但是通常这个全概率的求法是贝叶斯估计比较有技巧性的地方。

那么如何用贝叶斯估计来做预测呢?如果我们想求一个新值的概率,可以由



来计算。注意此时第二项因子在上的积分不再等于1,这就是和MLE及MAP很大的不同点。

我们仍然以扔硬币的伯努利实验为例来说明。和MAP中一样,我们假设先验分布为Beta分布,但是构造贝叶斯估计时,不是要求用后验最大时的参数来近似作为参数值,而是求满足Beta分布的参数p的期望,有


最大似然估计双参数python 最大似然法估计参数_最大似然估计_05


注意这里用到了公式



当T为二维的情形可以对Beta分布来应用;T为多维的情形可以对狄利克雷分布应用

根据结果可以知道,根据贝叶斯估计,参数p服从一个新的Beta分布。回忆一下,我们为p选取的先验分布是Beta分布,然后以p为参数的二项分布用贝叶斯估计得到的后验概率仍然服从Beta分布,由此我们说二项分布和Beta分布是共轭分布。在概率语言模型中,通常选取共轭分布作为先验,可以带来计算上的方便性。最典型的就是LDA中每个文档中词的Topic分布服从Multinomial分布,其先验选取共轭分布即Dirichlet分布;每个Topic下词的分布服从Multinomial分布,其先验也同样选取共轭分布即Dirichlet分布。

根据Beta分布的期望和方差计算公式,我们有


最大似然估计双参数python 最大似然法估计参数_最大似然估计_06


可以看出此时估计的p的期望和MLE ,MAP中得到的估计值都不同,此时如果仍然是做20次实验,12次正面,8次反面,那么我们根据贝叶斯估计得到的p满足参数为12+5和8+5的Beta分布,其均值和方差分别是17/30=0.567, 17*13/(31*30^2)=0.0079。可以看到此时求出的p的期望比MLE和MAP得到的估计值都小,更加接近0.5。

综上所述我们可以可视化MLE,MAP和贝叶斯估计对参数的估计结果如下

最大似然估计双参数python 最大似然法估计参数_最大似然估计_07

个人理解是,从MLE到MAP再到贝叶斯估计,对参数的表示越来越精确,得到的参数估计结果也越来越接近0.5这个先验概率,越来越能够反映基于样本的真实参数情况。



参考文献


http://www.360doc.com/content/17/0831/15/47002696_683577025.shtml