卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成。每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧到这里依旧适用。
卷积神经网络通常包含以下几种层:
- 卷积层(Convolutional layer),卷积神经网路中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。
- 线性整流层(Rectified Linear Units layer, ReLU layer),这一层神经的活性化函数(Activation function)使用线性整流(Rectified Linear Units, ReLU)f(x)=max(0,x)。
- 池化层(Pooling layer),通常在卷积层之后会得到维度很大的特征,将特征切成几个区域,取其最大值或平均值,得到新的、维度较小的特征。
- Drop out, 通常我们在训练Covnets时,会随机的丢弃一部分训练获得的参数,这样可以在一定程度上来防止过度拟合
- 全连接层( Fully-Connected layer), 把所有局部特征结合变成全局特征,用来计算最后每一类的得分。
下面是代码部分,今天我将使用Covnets去完成一件非常非常简单的图像分类任务。这里我们将对 CIFAR-10 数据集 中的图片进行分类。该数据集包含飞机、猫狗和其他物体。
首先,我们先获得数据集 (或者直接从 https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz )这里直接下载
1 from urllib.request import urlretrieve
2 from os.path import isfile, isdir
3 from tqdm import tqdm
4 import tarfile
5
6 cifar10_dataset_folder_path = 'cifar-10-batches-py'
7
8 class DLProgress(tqdm):
9 last_block = 0
10
11 def hook(self, block_num=1, block_size=1, total_size=None):
12 self.total = total_size
13 self.update((block_num - self.last_block) * block_size)
14 self.last_block = block_num
15
16 if not isfile(tar_gz_path):
17 with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
18 urlretrieve(
19 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
20 tar_gz_path,
21 pbar.hook)
22
23 if not isdir(cifar10_dataset_folder_path):
24 with tarfile.open(tar_gz_path) as tar:
25 tar.extractall()
26 tar.close()
在数据载入之后,我们需要对我们的图片预处理下,因为现在的像素点是0-255之间,我们需要把图片的像素点的值变成0-1之间,这样方便在后面的计算
1 def normalize(x):
2 """
3 Normalize a list of sample image data in the range of 0 to 1
4 : x: List of image data. The image shape is (32, 32, 3)
5 : return: Numpy array of normalize data
6 """
7 a = 0
8 b = 1
9 grayscale_min = 0
10 grayscale_max = 255
11 return a + (((x - grayscale_min) * (b - a))/(grayscale_max - grayscale_min))
因为CIFAR数据集里面有10类不同的图片,现在我们需要使用ONE-HOT的方法来给图片打上标签
1 def one_hot_encode(x):
2 """
3 One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
4 : x: List of sample Labels
5 : return: Numpy array of one-hot encoded labels
6 """
7 d = {0:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
8 1:[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
9 2:[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
10 3:[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
11 4:[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
12 5:[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
13 6:[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
14 7:[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
15 8:[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
16 9:[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}
17
18 map_list = []
19 for item in x:
20 map_list.append(d[item])
21 target = np.array(map_list)
22
23 return target
下面,我们就开始构建我们的Covnets了,首先,我们需要构建placeholder来储存我们的训练图片,训练数据的one-hot标签的编码以及我们dropout时候的概率值
1 import tensorflow as tf
2
3 def neural_net_image_input(image_shape):
4 """
5 Return a Tensor for a batch of image input
6 : image_shape: Shape of the images
7 : return: Tensor for image input.
8 """
9 x = tf.placeholder(tf.float32,[None, image_shape[0], image_shape[1],image_shape[2]],'x')
10 return x
11
12
13 def neural_net_label_input(n_classes):
14 """
15 Return a Tensor for a batch of label input
16 : n_classes: Number of classes
17 : return: Tensor for label input.
18 """
19 y = tf.placeholder(tf.float32,[None, n_classes],'y')
20 return y
21
22
23 def neural_net_keep_prob_input():
24 """
25 Return a Tensor for keep probability
26 : return: Tensor for keep probability.
27 """
28 keep_prob = tf.placeholder(tf.float32,None,'keep_prob')
29 return keep_prob
接着 我们来构建Covnets中最核心的 卷积层+最大池化层(这里我们用最大池化)
1 def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
2 """
3 Apply convolution then max pooling to x_tensor
4 :param x_tensor: TensorFlow Tensor
5 :param conv_num_outputs: Number of outputs for the convolutional layer
6 :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
7 :param conv_strides: Stride 2-D Tuple for convolution
8 :param pool_ksize: kernal size 2-D Tuple for pool
9 :param pool_strides: Stride 2-D Tuple for pool
10 : return: A tensor that represents convolution and max pooling of x_tensor
11 """
12 ## Weights and Bias
13 weight = tf.Variable(tf.truncated_normal([conv_ksize[0],conv_ksize[1],
14 x_tensor.get_shape().as_list()[-1],conv_num_outputs],stddev=0.1))
15 bias = tf.Variable(tf.zeros(conv_num_outputs))
16 ## Apply Convolution
17 conv_layer = tf.nn.conv2d(x_tensor,weight,strides = [1,conv_strides[0],conv_strides[1],1], padding='SAME')
18 ## Add Bias
19 conv_layer = tf.nn.bias_add(conv_layer,bias)
20 ## Apply Relu
21 conv_layer = tf.nn.relu(conv_layer)
22
23 return tf.nn.max_pool(conv_layer,
24 ksize=[1,pool_ksize[0],pool_ksize[1],1],
25 strides=[1,pool_strides[0],pool_strides[1],1],
26 padding='SAME')
实现 flatten
层,将 x_tensor
的维度从四维张量(4-D tensor)变成二维张量。输出应该是形状(部分大小(Batch Size),扁平化图片大小(Flattened Image Size))
1 def flatten(x_tensor):
2 """
3 Flatten x_tensor to (Batch Size, Flattened Image Size)
4 : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
5 : return: A tensor of size (Batch Size, Flattened Image Size).
6 """
7 # Get the shape of tensor
8 shape = x_tensor.get_shape().as_list()
9 # Compute the dim for image
10 dim = np.prod(shape[1:])
11 # reshape the tensor
12
13 return tf.reshape(x_tensor, [-1,dim])
在网络的最后一步,我们需要做一个全连接层 + 输出层,然后输出一个1*10的结果(10种结果的概率)
1 def fully_conn(x_tensor, num_outputs):
2 """
3 Apply a fully connected layer to x_tensor using weight and bias
4 : x_tensor: A 2-D tensor where the first dimension is batch size.
5 : num_outputs: The number of output that the new tensor should be.
6 : return: A 2-D tensor where the second dimension is num_outputs.
7 """
8 weight = tf.Variable(tf.truncated_normal([x_tensor.get_shape().as_list()[-1], num_outputs],stddev=0.1))
9 bias = tf.Variable(tf.zeros([num_outputs]))
10
11 fc = tf.reshape(x_tensor,[-1, weight.get_shape().as_list()[0]])
12 fc = tf.add(tf.matmul(fc,weight), bias)
13 fc = tf.nn.relu(fc)
14
15 return fc
16
17 def output(x_tensor, num_outputs):
18 """
19 Apply a output layer to x_tensor using weight and bias
20 : x_tensor: A 2-D tensor where the first dimension is batch size.
21 : num_outputs: The number of output that the new tensor should be.
22 : return: A 2-D tensor where the second dimension is num_outputs.
23 """
24
25 weight_out = tf.Variable(tf.truncated_normal([x_tensor.get_shape().as_list()[-1],num_outputs],stddev=0.1))
26 bias_out = tf.Variable(tf.zeros([num_outputs]))
27
28 out = tf.reshape(x_tensor, [-1, weight_out.get_shape().as_list()[0]])
29 out = tf.add(tf.matmul(out,weight_out),bias_out)
30
31 return out
在我们都完成基本的元素之后,我们这个时候来构建我们的网络
1 def conv_net(x, keep_prob):
2 """
3 Create a convolutional neural network model
4 : x: Placeholder tensor that holds image data.
5 : keep_prob: Placeholder tensor that hold dropout keep probability.
6 : return: Tensor that represents logits
7 """
8
9 conv1 = conv2d_maxpool(x, 32,(5,5),(2,2),(4,4),(2,2))
10
11 conv2 = conv2d_maxpool(conv1, 128, (5,5),(2,2),(2,2),(2,2))
12
13 conv3 = conv2d_maxpool(conv2, 256, (5,5),(2,2),(2,2),(2,2))
14
15
16 # flatten(x_tensor)
17
18 flatten_layer = flatten(conv3)
19
20 # fully_conn(x_tensor, num_outputs)
21
22 fc = fully_conn(flatten_layer, 1024)
23
24 # Set this to the number of classes
25 # Function Definition from Above:
26 # output(x_tensor, num_outputs)
27
28 output_layer = output(fc, 10)
29
30 return output_layer
31
32
33 ##############################
34 ## Build the Neural Network ##
35 ##############################
36
37 # Remove previous weights, bias, inputs, etc..
38 tf.reset_default_graph()
39
40 # Inputs
41 x = neural_net_image_input((32, 32, 3))
42 y = neural_net_label_input(10)
43 keep_prob = neural_net_keep_prob_input()
44
45 # Model
46 logits = conv_net(x, keep_prob)
47
48 # Name logits Tensor, so that is can be loaded from disk after training
49 logits = tf.identity(logits, name='logits')
50
51 # Loss and Optimizer
52 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
53 optimizer = tf.train.AdamOptimizer().minimize(cost)
54
55 # Accuracy
56 correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
57 accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')
在网络构建完成后,我们可以开始把我们的数据喂进去,训练我们的模型了
这里我随便设置下Hyper-Paramter
1 epochs = 30
2 batch_size = 256
3 keep_probability = 0.5
还需要设置下,在训练的过程中,我们一直需要看到测试集的accuracy来观测我们训练的情况
1 def print_stats(session, feature_batch, label_batch, cost, accuracy):
2 """
3 Print information about loss and validation accuracy
4 : session: Current TensorFlow session
5 : feature_batch: Batch of Numpy image data
6 : label_batch: Batch of Numpy label data
7 : cost: TensorFlow cost function
8 : accuracy: TensorFlow accuracy function
9 """
10 loss = sess.run(cost, feed_dict = {
11 x:feature_batch,
12 y:label_batch,
13 keep_prob:1.
14 })
15
16 valid_acc = sess.run(accuracy,feed_dict = {
17 x:valid_features,
18 y:valid_labels,
19 keep_prob:1.
20 })
21
22 print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(
23 loss,
24 valid_acc))
模型训练
1 save_model_path = './image_classification'
2
3 print('Training...')
4 with tf.Session() as sess:
5 # Initializing the variables
6 sess.run(tf.global_variables_initializer())
7
8 # Training cycle
9 for epoch in range(epochs):
10 # Loop over all batches
11 n_batches = 5
12 for batch_i in range(1, n_batches + 1):
13 for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
14 train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
15 print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='')
16 print_stats(sess, batch_features, batch_labels, cost, accuracy)
17
18 # Save Model
19 saver = tf.train.Saver()
20 save_path = saver.save(sess, save_model_path)
贴上我在训练的最后的验证集的准确率
Epoch 29, CIFAR-10 Batch 4: Loss: 0.0139 Validation Accuracy: 0.625600
Epoch 29, CIFAR-10 Batch 5: Loss: 0.0090 Validation Accuracy: 0.631000
Epoch 30, CIFAR-10 Batch 1: Loss: 0.0138 Validation Accuracy: 0.638800
Epoch 30, CIFAR-10 Batch 2: Loss: 0.0192 Validation Accuracy: 0.627400
Epoch 30, CIFAR-10 Batch 3: Loss: 0.0055 Validation Accuracy: 0.633400
Epoch 30, CIFAR-10 Batch 4: Loss: 0.0114 Validation Accuracy: 0.641800
Epoch 30, CIFAR-10 Batch 5: Loss: 0.0050 Validation Accuracy: 0.647400
还不错,50%以上了,如果瞎猜 只有10%的
当然了,我们的模型的效率可以进一步提高,比如我们进一步去选择更合适的超参数,或者加入一些其他的技巧。
这里有个链接,是大家利用这个数据集训练的结果,现在最高的已经96.53%了,看看大佬们是怎么做的吧。。。。