SPARK SQL 基本语法
示例SQL如下
MERGE INTO target_table t
USING source_table s
ON s.id = t.id //这里是JOIN的关联条件
WHEN MATCHED AND s.opType = 'delete' THEN DELETE // WHEN条件是对当前行进行打标的匹配条件
WHEN MATCHED AND s.opType = 'update' THEN UPDATE SET id = s.id, name = s.name
WHEN NOT MATCHED AND s.opType = 'insert' THEN INSERT (key, value) VALUES (key, value)
Source表和target表,先按di列进行JOIN,然后对于关联后的结果集的每一行进行条件判断,如果opType=‘delete’,那么就删除当前行;如果是不匹配而且opType=‘insert’那么,就将source表中的数据插入到目标表。
Spark3.3 中定义的三种数据行的状态
package org.apache.spark.sql.catalyst.util
object RowDeltaUtils {
// 新旧数据记录,Merge阶段,会为每一个结果行添加一个新的列,其列名就这个常量
final val OPERATION_COLUMN: String = "__row_operation"
final val DELETE_OPERATION: Int = 1
final val UPDATE_OPERATION: Int = 2
final val INSERT_OPERATION: Int = 3
}
源码跟踪
文章引用的代码来自Iceberg 1.0.x 和Spark 3.3版本。
生成未解析的逻辑计划树
class IcebergSparkSqlExtensionsParser(delegate: ParserInterface) extends ParserInterface with ExtendedParser {
/**
* Parse a string to a LogicalPlan.
*/
override def parsePlan(sqlText: String): LogicalPlan = {
val sqlTextAfterSubstitution = substitutor.substitute(sqlText)
if (isIcebergCommand(sqlTextAfterSubstitution)) {
parse(sqlTextAfterSubstitution) { parser => astBuilder.visit(parser.singleStatement()) }.asInstanceOf[LogicalPlan]
} else {
val parsedPlan = delegate.parsePlan(sqlText)
parsedPlan match {
case e: ExplainCommand =>
// 改写EXPLAIN命令
e.copy(logicalPlan = replaceRowLevelCommands(e.logicalPlan))
case p =>
// 改写UPDATE/DELETE/MERGE INTO命令
replaceRowLevelCommands(p)
}
}
}
private def replaceRowLevelCommands(plan: LogicalPlan): LogicalPlan = plan resolveOperatorsDown {
// DELETE命令,支持删除分区
case DeleteFromTable(UnresolvedIcebergTable(aliasedTable), condition) =>
DeleteFromIcebergTable(aliasedTable, Some(condition))
// UPDATE命令,支持更新数据,内部实现为DELETE + INSERT的组合
case UpdateTable(UnresolvedIcebergTable(aliasedTable), assignments, condition) =>
UpdateIcebergTable(aliasedTable, assignments, condition)
// MERGE INTO命令,合并新数据到目标表,内部实现为DELETE + INSERT的组合
case MergeIntoTable(UnresolvedIcebergTable(aliasedTable), source, cond, matchedActions, notMatchedActions) =>
// cannot construct MergeIntoIcebergTable right away as MERGE operations require special resolution
// that's why the condition and actions must be hidden from the regular resolution rules in Spark
// see ResolveMergeIntoTableReferences for details
// 构建MERGE INTO的上下文环境
// cond:对应示例中的ON s.id = t.id
// matchedActions:对应示例中的WHEN MATCHED AND子句
// notMatchedActions:对应示例中的WHEN NOT MATCHED AND子句
val context = MergeIntoContext(cond, matchedActions, notMatchedActions)
UnresolvedMergeIntoIcebergTable(aliasedTable, source, context)
}
}
解析Iceberg Table
/**
* A resolution rule similar to ResolveReferences in Spark but handles Iceberg MERGE operations.
*/
case class ResolveMergeIntoTableReferences(spark: SparkSession) extends Rule[LogicalPlan] {
private lazy val analyzer: Analyzer = spark.sessionState.analyzer
override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperatorsUp {
case m @ UnresolvedMergeIntoIcebergTable(targetTable, sourceTable, context)
if targetTable.resolved && sourceTable.resolved && m.duplicateResolved =>
// 解析新数据匹配上了旧数据时的行为
val resolvedMatchedActions = context.matchedActions.map {
// WHEN MATCHED AND s.opType = 'delete' THEN DELETE
case DeleteAction(cond) =>
val resolvedCond = cond.map(resolveCond("DELETE", _, m))
DeleteAction(resolvedCond)
// WHEN MATCHED AND s.opType = 'update' THEN UPDATE SET id = s.id, name = s.name
case UpdateAction(cond, assignments) =>
val resolvedCond = cond.map(resolveCond("UPDATE", _, m))
// the update action can access columns from both target and source tables
val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = false)
UpdateAction(resolvedCond, resolvedAssignments)
case UpdateStarAction(updateCondition) =>
val resolvedUpdateCondition = updateCondition.map(resolveCond("UPDATE", _, m))
val assignments = targetTable.output.map { attr =>
Assignment(attr, UnresolvedAttribute(Seq(attr.name)))
}
// for UPDATE *, the value must be from the source table
val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true)
UpdateAction(resolvedUpdateCondition, resolvedAssignments)
case _ =>
throw new AnalysisException("Matched actions can only contain UPDATE or DELETE")
}
// 解析新数据没有匹配旧数据记录时的行为
val resolvedNotMatchedActions = context.notMatchedActions.map {
case InsertAction(cond, assignments) =>
// the insert action is used when not matched, so its condition and value can only
// access columns from the source table
val resolvedCond = cond.map(resolveCond("INSERT", _, Project(Nil, m.sourceTable)))
val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true)
InsertAction(resolvedCond, resolvedAssignments)
case InsertStarAction(cond) =>
// the insert action is used when not matched, so its condition and value can only
// access columns from the source table
val resolvedCond = cond.map(resolveCond("INSERT", _, Project(Nil, m.sourceTable)))
val assignments = targetTable.output.map { attr =>
Assignment(attr, UnresolvedAttribute(Seq(attr.name)))
}
val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true)
InsertAction(resolvedCond, resolvedAssignments)
case _ =>
throw new AnalysisException("Not matched actions can only contain INSERT")
}
val resolvedMergeCondition = resolveCond("SEARCH", context.mergeCondition, m)
// 返回解析后的MergeIntoIcebergTable逻辑树,方便后续的重写逻辑
MergeIntoIcebergTable(
targetTable,
sourceTable,
mergeCondition = resolvedMergeCondition,
matchedActions = resolvedMatchedActions,
notMatchedActions = resolvedNotMatchedActions)
}
}
一、重写逻辑计划树
运行时,如果发现当前SQL是MergeIntoIcebergTable,则会生成在生成优化的逻辑计划树时,应用如下的Rule,重写当前的Merge into 逻辑树:
object RewriteMergeIntoTable extends RewriteRowLevelIcebergCommand {
private final val ROW_FROM_SOURCE = "__row_from_source"
private final val ROW_FROM_TARGET = "__row_from_target"
private final val ROW_ID = "__row_id"
private final val ROW_FROM_SOURCE_REF = FieldReference(ROW_FROM_SOURCE)
private final val ROW_FROM_TARGET_REF = FieldReference(ROW_FROM_TARGET)
private final val ROW_ID_REF = FieldReference(ROW_ID)
override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
// ... 跳过其它情况下的匹配
case m @ MergeIntoIcebergTable(aliasedTable, source, cond, matchedActions, notMatchedActions, None)
if m.resolved && m.aligned =>
EliminateSubqueryAliases(aliasedTable) match {
case r @ DataSourceV2Relation(tbl: SupportsRowLevelOperations, _, _, _, _) =>
val table = buildOperationTable(tbl, MERGE, CaseInsensitiveStringMap.empty())
val rewritePlan = table.operation match {
case _: SupportsDelta =>
// 构建增量逻辑计划,table指的是Iceberg目标表,source指的是新数据
buildWriteDeltaPlan(r, table, source, cond, matchedActions, notMatchedActions)
case _ =>
// 否则就是COW模式
buildReplaceDataPlan(r, table, source, cond, matchedActions, notMatchedActions)
}
m.copy(rewritePlan = Some(rewritePlan))
case p =>
throw new AnalysisException(s"$p is not an Iceberg table")
}
}
// build a rewrite plan for sources that support row deltas
private def buildWriteDeltaPlan(
relation: DataSourceV2Relation,
operationTable: RowLevelOperationTable,
source: LogicalPlan,
cond: Expression,
matchedActions: Seq[MergeAction], // 通过ResolveMergeIntoTableReferences规则,从merge sql语句中解析出来,merge行为,例如UPDATE关键字对应于UpdateAction
notMatchedActions: Seq[MergeAction]): WriteDelta = {
// resolve all needed attrs (e.g. row ID and any required metadata attrs)
val rowAttrs = relation.output
val rowIdAttrs = resolveRowIdAttrs(relation, operationTable.operation)
val metadataAttrs = resolveRequiredMetadataAttrs(relation, operationTable.operation)
// construct a scan relation and include all required metadata columns
// operaionTable表示的待写入的目标表,这是会根据关联条件,构建一个目标表的scan relation
val readRelation = buildRelationWithAttrs(relation, operationTable, rowIdAttrs ++ metadataAttrs)
val readAttrs = readRelation.output
// project an extra column to check if a target row exists after the join
// 为目标表的数据添加一列,表示该行数据来自于目标表
val targetTableProjExprs = readAttrs :+ Alias(TrueLiteral, ROW_FROM_TARGET)()
// 生成目标表的输出数据
val targetTableProj = Project(targetTableProjExprs, readRelation)
// project an extra column to check if a source row exists after the join
// 为新的数据添加一列,表示该行数据来自于新的输入
val sourceTableProjExprs = source.output :+ Alias(TrueLiteral, ROW_FROM_SOURCE)()
val sourceTableProj = Project(sourceTableProjExprs, source)
// use inner join if there is no NOT MATCHED action, unmatched source rows can be discarded
// use right outer join in all other cases, unmatched source rows may be needed
// also disable broadcasts for the target table to perform the cardinality check
val joinType = if (notMatchedActions.isEmpty) Inner else RightOuter
val joinHint = JoinHint(leftHint = Some(HintInfo(Some(NO_BROADCAST_HASH))), rightHint = None)
// 将从目标表读取的数据,与新的、待写入的来源表的数据进行JOIN,如果决定忽略不匹配的字段(丢弃)那么会使用inner join,
// 否则使用right join,由于目标表在JOIN左边,因此也就意味着,最终的Join结果是以新数据为基准,如果成功与目标
// 表的数据行关联,则说明是要update的数据行;没有新数据没有关联到目标表的数据,则说明是该行数据记录属于新增insert的数据行。
val joinPlan = Join(NoStatsUnaryNode(targetTableProj), sourceTableProj, joinType, Some(cond), joinHint)
val deleteRowValues = buildDeltaDeleteRowValues(rowAttrs, rowIdAttrs)
val metadataReadAttrs = readAttrs.filterNot(relation.outputSet.contains)
val matchedConditions = matchedActions.map(actionCondition)
// 创建匹配的数据行的输出meta信息,MergeRowsExec会根据这些信息,生成数据行的投影器,并与matchedConditions合并生成一个matchedPairs的二元组,
// val matchedPairs = matchedPreds zip matchedProjs
// MergeRowsExec就以此二元组来应用到数据记录上,得到merge后的、带有操作类型的internal row
val matchedOutputs = matchedActions.map(deltaActionOutput(_, deleteRowValues, metadataReadAttrs))
val notMatchedConditions = notMatchedActions.map(actionCondition)
val notMatchedOutputs = notMatchedActions.map(deltaActionOutput(_, deleteRowValues, metadataReadAttrs))
// 为merge后的数据添加新的一列,即operation_column,用于标记每一行的记录的类型
// final val OPERATION_COLUMN: String = "__row_operation"
// final val DELETE_OPERATION: Int = 1
// final val UPDATE_OPERATION: Int = 2
// final val INSERT_OPERATION: Int = 3
val operationTypeAttr = AttributeReference(OPERATION_COLUMN, IntegerType, nullable = false)()
val rowFromSourceAttr = resolveAttrRef(ROW_FROM_SOURCE_REF, joinPlan)
val rowFromTargetAttr = resolveAttrRef(ROW_FROM_TARGET_REF, joinPlan)
// merged rows must contain values for the operation type and all read attrs
val mergeRowsOutput = buildMergeRowsOutput(matchedOutputs, notMatchedOutputs, operationTypeAttr +: readAttrs)
// 生成一个MergeRows的逻辑计划节点,joinPlan作为其上游节点,会对应生成MergeRowsExec物理算子
val mergeRows = MergeRows(
isSourceRowPresent = IsNotNull(rowFromSourceAttr),
isTargetRowPresent = if (notMatchedActions.isEmpty) TrueLiteral else IsNotNull(rowFromTargetAttr),
matchedConditions = matchedConditions,
matchedOutputs = matchedOutputs,
notMatchedConditions = notMatchedConditions,
notMatchedOutputs = notMatchedOutputs,
// only needed if emitting unmatched target rows
targetOutput = Nil,
rowIdAttrs = rowIdAttrs,
performCardinalityCheck = isCardinalityCheckNeeded(matchedActions),
emitNotMatchedTargetRows = false,
output = mergeRowsOutput,
joinPlan)
// build a plan to write the row delta to the table
val writeRelation = relation.copy(table = operationTable)
val projections = buildMergeDeltaProjections(mergeRows, rowAttrs, rowIdAttrs, metadataAttrs)
// WriteDelta会对应生成WriteDeltaExec物理算子,写出增量数据到目标表
WriteDelta(writeRelation, mergeRows, relation, projections)
}
二、Merge rows合并结果集
case class MergeRowsExec(…) {
// 在每一个Partition数据集上进行验证,根据匹配表达式的结果为每一行数据记录添加标记
private def processPartition(rowIterator: Iterator[InternalRow]): Iterator[InternalRow] = {
val inputAttrs = child.output
val isSourceRowPresentPred = createPredicate(isSourceRowPresent, inputAttrs)
val isTargetRowPresentPred = createPredicate(isTargetRowPresent, inputAttrs)
val matchedPreds = matchedConditions.map(createPredicate(_, inputAttrs))
val matchedProjs = matchedOutputs.map {
case output if output.nonEmpty => Some(createProjection(output, inputAttrs))
case _ => None
}
// matchedPreds,即一个或多个predicate用于判定当前行是不是满足 给定的条件
// matchedProjs,即一个UnsafeProjection的对象,可以将一个InternalRow写出成一个UnsafeRow,并且带有具体的更新类型,UPDATE/INSERT/DELETE
val matchedPairs = matchedPreds zip matchedProjs
val notMatchedPreds = notMatchedConditions.map(createPredicate(_, inputAttrs))
val notMatchedProjs = notMatchedOutputs.map {
case output if output.nonEmpty => Some(createProjection(output, inputAttrs))
case _ => None
}
val nonMatchedPairs = notMatchedPreds zip notMatchedProjs
val projectTargetCols = createProjection(targetOutput, inputAttrs)
val rowIdProj = createProjection(rowIdAttrs, inputAttrs)
// This method is responsible for processing a input row to emit the resultant row with an
// additional column that indicates whether the row is going to be included in the final
// output of merge or not.
// 1. Found a target row for which there is no corresponding source row (join condition not met)
// - Only project the target columns if we need to output unchanged rows
// 2. Found a source row for which there is no corresponding target row (join condition not met)
// - Apply the not matched actions (i.e INSERT actions) if non match conditions are met.
// 3. Found a source row for which there is a corresponding target row (join condition met)
// - Apply the matched actions (i.e DELETE or UPDATE actions) if match conditions are met.
// 处理每一行数据,注意这里的结果集是来自于target RIGHT OUTER JOIN source的结果,因此如果目标表的数据行没有出现,
// 说明当前行是不匹配的;如果source表中的行不存在,则说明行是不匹配的;否则就是目标的行和source表中的行都出现了,
// 说明当前行是匹配的。
// 总之,对于最终的结果,source表的数据行有三种状态(新增数据),UPDATE/DELETE/INSERT。
def processRow(inputRow: InternalRow): InternalRow = {
// 如果忽略不匹配的行或是源数据行不匹配
if (emitNotMatchedTargetRows && !isSourceRowPresentPred.eval(inputRow)) {
projectTargetCols.apply(inputRow)
} else if (!isTargetRowPresentPred.eval(inputRow)) {
// 如果是不匹配的数据行,生成一个新的row,并带有相应的操作类型,一般是INSERT,作为第一个字段
applyProjection(nonMatchedPairs, inputRow)
} else {
// 如果是匹配的数据行,则生成一个新的row,并带有相应的操作类型,一般是DELETE或是UPDATE,作为第一个字段
applyProjection(matchedPairs, inputRow)
}
}
var lastMatchedRowId: InternalRow = null
def processRowWithCardinalityCheck(inputRow: InternalRow): InternalRow = {
val isSourceRowPresent = isSourceRowPresentPred.eval(inputRow)
val isTargetRowPresent = isTargetRowPresentPred.eval(inputRow)
if (isSourceRowPresent && isTargetRowPresent) {
val currentRowId = rowIdProj.apply(inputRow)
if (currentRowId == lastMatchedRowId) {
throw new SparkException(
"The ON search condition of the MERGE statement matched a single row from " +
"the target table with multiple rows of the source table. This could result " +
"in the target row being operated on more than once with an update or delete " +
"operation and is not allowed.")
}
lastMatchedRowId = currentRowId.copy()
} else {
lastMatchedRowId = null
}
if (emitNotMatchedTargetRows && !isSourceRowPresent) {
projectTargetCols.apply(inputRow)
} else if (!isTargetRowPresent) {
applyProjection(nonMatchedPairs, inputRow)
} else {
applyProjection(matchedPairs, inputRow)
}
}
val processFunc: InternalRow => InternalRow = if (performCardinalityCheck) {
processRowWithCardinalityCheck
} else {
processRow
}
rowIterator
.map(processFunc)
.filter(row => row != null)
}
}
三、增量数据写出
/**
* Physical plan node to write a delta of rows to an existing table.
*/
case class WriteDeltaExec(
query: SparkPlan,
refreshCache: () => Unit,
projections: WriteDeltaProjections,
write: DeltaWrite) extends ExtendedV2ExistingTableWriteExec[DeltaWriter[InternalRow]] {
override lazy val references: AttributeSet = query.outputSet
override lazy val stringArgs: Iterator[Any] = Iterator(query, write)
// 创建增量写出数据的任务,详细定义见后面DeltaWithMetadataWritingSparkTask
override lazy val writingTask: WritingSparkTask[DeltaWriter[InternalRow]] = {
DeltaWithMetadataWritingSparkTask(projections)
}
override protected def withNewChildInternal(newChild: SparkPlan): WriteDeltaExec = {
copy(query = newChild)
}
}
case class DeltaWithMetadataWritingSparkTask(
projs: WriteDeltaProjections) extends WritingSparkTask[DeltaWriter[InternalRow]] {
private lazy val rowProjection = projs.rowProjection.orNull
private lazy val rowIdProjection = projs.rowIdProjection
private lazy val metadataProjection = projs.metadataProjection.orNull
// InternalRow来自于Merge后的结果,每一行的第一个字段,标记了当前行的操作类型
override protected def writeFunc(writer: DeltaWriter[InternalRow], row: InternalRow): Unit = {
val operation = row.getInt(0)
operation match {
case DELETE_OPERATION =>
rowIdProjection.project(row)
metadataProjection.project(row)
// 如果当前数据行被 标记为DELETE,那么就执行删除操作,如果数据来自分区表,那么底层调用PartitionedDeltaWriter::delete(…)方法
writer.delete(metadataProjection, rowIdProjection)
case UPDATE_OPERATION =>
rowProjection.project(row)
rowIdProjection.project(row)
metadataProjection.project(row)
// 同上,如果数据来自分区表,那么底层调用PartitionedDeltaWriter::update(…)方法
writer.update(metadataProjection, rowIdProjection, rowProjection)
case INSERT_OPERATION =>
rowProjection.project(row)
writer.insert(rowProjection)
case other =>
throw new SparkException(s"Unexpected operation ID: $other")
}
}
}
/** Spark写出任务,公共接口,提供统一的写出过程 */
trait WritingSparkTask[W <: DataWriter[InternalRow]] extends Logging with Serializable {
protected def writeFunc(writer: W, row: InternalRow): Unit
def run(
writerFactory: DataWriterFactory,
context: TaskContext,
iter: Iterator[InternalRow],
useCommitCoordinator: Boolean,
customMetrics: Map[String, SQLMetric]): DataWritingSparkTaskResult = {
val stageId = context.stageId()
val stageAttempt = context.stageAttemptNumber()
val partId = context.partitionId()
val taskId = context.taskAttemptId()
val attemptId = context.attemptNumber()
val dataWriter = writerFactory.createWriter(partId, taskId).asInstanceOf[W]
var count = 0L
// write the data and commit this writer.
Utils.tryWithSafeFinallyAndFailureCallbacks(block = {
while (iter.hasNext) { // 遍历RDD中的每一行
if (count % CustomMetrics.NUM_ROWS_PER_UPDATE == 0) {
CustomMetrics.updateMetrics(ArraySeq.unsafeWrapArray(dataWriter.currentMetricsValues), customMetrics)
}
// Count is here.
count += 1
// 即调用DeltaWithMetadataWritingSparkTask::writeFunc(..)方法,执行真正的写出
writeFunc(dataWriter, iter.next())
}
CustomMetrics.updateMetrics(ArraySeq.unsafeWrapArray(dataWriter.currentMetricsValues), customMetrics)
// 数据写出完成,向Spark中的OutputCommitCoordinator提交
val msg = if (useCommitCoordinator) {
val coordinator = SparkEnv.get.outputCommitCoordinator
val commitAuthorized = coordinator.canCommit(stageId, stageAttempt, partId, attemptId)
if (commitAuthorized) {
logInfo(s"Commit authorized for partition $partId (task $taskId, attempt $attemptId, " +
s"stage $stageId.$stageAttempt)")
dataWriter.commit()
} else {
val commitDeniedException = QueryExecutionErrors.commitDeniedError(
partId, taskId, attemptId, stageId, stageAttempt)
logInfo(commitDeniedException.getMessage)
// throwing CommitDeniedException will trigger the catch block for abort
throw commitDeniedException
}
} else {
logInfo(s"Writer for partition ${context.partitionId()} is committing.")
dataWriter.commit()
}
logInfo(s"Committed partition $partId (task $taskId, attempt $attemptId, " +
s"stage $stageId.$stageAttempt)")
DataWritingSparkTaskResult(count, msg)
})(catchBlock = {
// If there is an error, abort this writer
logError(s"Aborting commit for partition $partId (task $taskId, attempt $attemptId, " +
s"stage $stageId.$stageAttempt)")
dataWriter.abort()
logError(s"Aborted commit for partition $partId (task $taskId, attempt $attemptId, " +
s"stage $stageId.$stageAttempt)")
}, finallyBlock = {
dataWriter.close()
})
}
}
四、分区表数据的增量写出
private static class PartitionedDeltaWriter extends DeleteAndDataDeltaWriter {
private final PartitionSpec dataSpec;
private final PartitionKey dataPartitionKey;
private final InternalRowWrapper internalRowDataWrapper;
PartitionedDeltaWriter(
Table table,
SparkFileWriterFactory writerFactory,
OutputFileFactory dataFileFactory,
OutputFileFactory deleteFileFactory,
Context context) {
super(table, writerFactory, dataFileFactory, deleteFileFactory, context);
this.dataSpec = table.spec();
this.dataPartitionKey = new PartitionKey(dataSpec, context.dataSchema());
this.internalRowDataWrapper = new InternalRowWrapper(context.dataSparkType());
}
// 删除旧的数据记录,这里是写出position delete file,此方法实际上是在父类当中的定义的,具体的注释,见DeleteAndDataDeltaWriter类的解析
@Override
public void delete(InternalRow meta, InternalRow id) throws IOException {
int specId = meta.getInt(specIdOrdinal);
PartitionSpec spec = specs.get(specId);
InternalRow partition = meta.getStruct(partitionOrdinal, deletePartitionRowWrapper.size());
StructProjection partitionProjection = deletePartitionProjections.get(specId);
partitionProjection.wrap(deletePartitionRowWrapper.wrap(partition));
String file = id.getString(fileOrdinal);
long position = id.getLong(positionOrdinal);
delegate.delete(file, position, spec, partitionProjection);
}
@Override
public void update(InternalRow meta, InternalRow id, InternalRow row) throws IOException {
delete(meta, id); // 删除旧的数据记录,这里是写出position delete file
dataPartitionKey.partition(internalRowDataWrapper.wrap(row));
// 写入新的数据行,delegate实际上是一个DeleteAndDataDeltaWriter的实例
delegate.update(row, dataSpec, dataPartitionKey);
}
@Override
public void insert(InternalRow row) throws IOException {
dataPartitionKey.partition(internalRowDataWrapper.wrap(row));
delegate.insert(row, dataSpec, dataPartitionKey);
}
}
DeleteAndDataDeltaWriter:删除和增量更新的抽象基类
private abstract static class DeleteAndDataDeltaWriter extends BaseDeltaWriter {
protected final PositionDeltaWriter<InternalRow> delegate;
private final FileIO io;
private final Map<Integer, PartitionSpec> specs;
private final InternalRowWrapper deletePartitionRowWrapper;
private final Map<Integer, StructProjection> deletePartitionProjections;
private final int specIdOrdinal;
private final int partitionOrdinal;
private final int fileOrdinal;
private final int positionOrdinal;
private boolean closed = false;
DeleteAndDataDeltaWriter(
Table table,
SparkFileWriterFactory writerFactory,
OutputFileFactory dataFileFactory,
OutputFileFactory deleteFileFactory,
Context context) {
this.delegate =
new BasePositionDeltaWriter<>(
newInsertWriter(table, writerFactory, dataFileFactory, context),
newUpdateWriter(table, writerFactory, dataFileFactory, context),
newDeleteWriter(table, writerFactory, deleteFileFactory, context));
this.io = table.io();
this.specs = table.specs();
Types.StructType partitionType = Partitioning.partitionType(table);
this.deletePartitionRowWrapper = initPartitionRowWrapper(partitionType);
this.deletePartitionProjections = buildPartitionProjections(partitionType, specs);
this.specIdOrdinal = context.metadataSparkType().fieldIndex(MetadataColumns.SPEC_ID.name());
this.partitionOrdinal =
context.metadataSparkType().fieldIndex(MetadataColumns.PARTITION_COLUMN_NAME);
this.fileOrdinal = context.deleteSparkType().fieldIndex(MetadataColumns.FILE_PATH.name());
this.positionOrdinal =
context.deleteSparkType().fieldIndex(MetadataColumns.ROW_POSITION.name());
}
@Override
public void delete(InternalRow meta, InternalRow id) throws IOException {
int specId = meta.getInt(specIdOrdinal);
PartitionSpec spec = specs.get(specId);
InternalRow partition = meta.getStruct(partitionOrdinal, deletePartitionRowWrapper.size());
// 得到指定的specId对应的分区投影器
StructProjection partitionProjection = deletePartitionProjections.get(specId);
// 通过分区字段的投影器,解析数据行对应的字段值
partitionProjection.wrap(deletePartitionRowWrapper.wrap(partition));
// 被删除的数据记录所在的文件路径
String file = id.getString(fileOrdinal);
// 被删除的数据记录在文件中的位置(行号)
long position = id.getLong(positionOrdinal);
// 最终会调用ClusteredPositionDeleteWriter::delete(…)方法,写出到position delete 文件,
// 写出信息,(file, position, partitionProject),会被封装成一个PositionDelete实例,写出到position delete文件,
// 实际上文件中的一行,因此position delete文件包含的数据行的结构也就很明显了
// 注意这里的position delete file的数据格式,与Flink模块中的的writer的实现PartitionedDeltaWriter是不同的
delegate.delete(file, position, spec, partitionProjection);
}
@Override
public WriterCommitMessage commit() throws IOException {
close();
// public class WriteResult implements Serializable {
// private DataFile[] dataFiles;
// private DeleteFile[] deleteFiles;
// private CharSequence[] referencedDataFiles;
// }
WriteResult result = delegate.result();
return new DeltaTaskCommit(result);
}
@Override
public void abort() throws IOException {
close();
WriteResult result = delegate.result();
cleanFiles(io, Arrays.asList(result.dataFiles()));
cleanFiles(io, Arrays.asList(result.deleteFiles()));
}
@Override
public void close() throws IOException {
if (!closed) {
delegate.close();
this.closed = true;
}
}
private PartitioningWriter<InternalRow, DataWriteResult> newInsertWriter(
Table table,
SparkFileWriterFactory writerFactory,
OutputFileFactory fileFactory,
Context context) {
long targetFileSize = context.targetDataFileSize();
if (table.spec().isPartitioned() && context.fanoutWriterEnabled()) {
return new FanoutDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
} else {
return new ClusteredDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
}
}
private PartitioningWriter<InternalRow, DataWriteResult> newUpdateWriter(
Table table,
SparkFileWriterFactory writerFactory,
OutputFileFactory fileFactory,
Context context) {
long targetFileSize = context.targetDataFileSize();
if (table.spec().isPartitioned()) {
// use a fanout writer for partitioned tables to write updates as they may be out of order
return new FanoutDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
} else {
return new ClusteredDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
}
}
private ClusteredPositionDeleteWriter<InternalRow> newDeleteWriter(
Table table,
SparkFileWriterFactory writerFactory,
OutputFileFactory fileFactory,
Context context) {
long targetFileSize = context.targetDeleteFileSize();
return new ClusteredPositionDeleteWriter<>(
writerFactory, fileFactory, table.io(), targetFileSize);
}
}