SPARK SQL 基本语法

示例SQL如下

MERGE INTO target_table t
USING source_table s
ON s.id = t.id                //这里是JOIN的关联条件
WHEN MATCHED AND s.opType = 'delete' THEN DELETE // WHEN条件是对当前行进行打标的匹配条件
WHEN MATCHED AND s.opType = 'update' THEN UPDATE SET id = s.id, name = s.name
WHEN NOT MATCHED AND s.opType = 'insert' THEN INSERT (key, value) VALUES (key, value)

Source表和target表,先按di列进行JOIN,然后对于关联后的结果集的每一行进行条件判断,如果opType=‘delete’,那么就删除当前行;如果是不匹配而且opType=‘insert’那么,就将source表中的数据插入到目标表。

Spark3.3 中定义的三种数据行的状态

package org.apache.spark.sql.catalyst.util
object RowDeltaUtils {
  // 新旧数据记录,Merge阶段,会为每一个结果行添加一个新的列,其列名就这个常量
  final val OPERATION_COLUMN: String = "__row_operation"
  final val DELETE_OPERATION: Int = 1
  final val UPDATE_OPERATION: Int = 2
  final val INSERT_OPERATION: Int = 3
}

源码跟踪

文章引用的代码来自Iceberg 1.0.x 和Spark 3.3版本。

生成未解析的逻辑计划树

class IcebergSparkSqlExtensionsParser(delegate: ParserInterface) extends ParserInterface with ExtendedParser {
  /**
   * Parse a string to a LogicalPlan.
   */
  override def parsePlan(sqlText: String): LogicalPlan = {
    val sqlTextAfterSubstitution = substitutor.substitute(sqlText)
    if (isIcebergCommand(sqlTextAfterSubstitution)) {
      parse(sqlTextAfterSubstitution) { parser => astBuilder.visit(parser.singleStatement()) }.asInstanceOf[LogicalPlan]
    } else {
      val parsedPlan = delegate.parsePlan(sqlText)
      parsedPlan match {
        case e: ExplainCommand =>
          // 改写EXPLAIN命令
          e.copy(logicalPlan = replaceRowLevelCommands(e.logicalPlan))
        case p =>
          // 改写UPDATE/DELETE/MERGE INTO命令
          replaceRowLevelCommands(p)
      }
    }
  }

  private def replaceRowLevelCommands(plan: LogicalPlan): LogicalPlan = plan resolveOperatorsDown {
    // DELETE命令,支持删除分区
    case DeleteFromTable(UnresolvedIcebergTable(aliasedTable), condition) =>
      DeleteFromIcebergTable(aliasedTable, Some(condition))
    // UPDATE命令,支持更新数据,内部实现为DELETE + INSERT的组合
    case UpdateTable(UnresolvedIcebergTable(aliasedTable), assignments, condition) =>
      UpdateIcebergTable(aliasedTable, assignments, condition)
    // MERGE INTO命令,合并新数据到目标表,内部实现为DELETE + INSERT的组合
    case MergeIntoTable(UnresolvedIcebergTable(aliasedTable), source, cond, matchedActions, notMatchedActions) =>
      // cannot construct MergeIntoIcebergTable right away as MERGE operations require special resolution
      // that's why the condition and actions must be hidden from the regular resolution rules in Spark
      // see ResolveMergeIntoTableReferences for details
      // 构建MERGE INTO的上下文环境
      // cond:对应示例中的ON s.id = t.id
      // matchedActions:对应示例中的WHEN MATCHED AND子句
      // notMatchedActions:对应示例中的WHEN NOT MATCHED AND子句
      val context = MergeIntoContext(cond, matchedActions, notMatchedActions)
      UnresolvedMergeIntoIcebergTable(aliasedTable, source, context)
  }
}

解析Iceberg Table

/**
 * A resolution rule similar to ResolveReferences in Spark but handles Iceberg MERGE operations.
 */
case class ResolveMergeIntoTableReferences(spark: SparkSession) extends Rule[LogicalPlan] {

  private lazy val analyzer: Analyzer = spark.sessionState.analyzer

  override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperatorsUp {
    case m @ UnresolvedMergeIntoIcebergTable(targetTable, sourceTable, context)
        if targetTable.resolved && sourceTable.resolved && m.duplicateResolved =>
      // 解析新数据匹配上了旧数据时的行为
      val resolvedMatchedActions = context.matchedActions.map {
        // WHEN MATCHED AND s.opType = 'delete' THEN DELETE
        case DeleteAction(cond) =>
          val resolvedCond = cond.map(resolveCond("DELETE", _, m))
          DeleteAction(resolvedCond)
        // WHEN MATCHED AND s.opType = 'update' THEN UPDATE SET id = s.id, name = s.name
        case UpdateAction(cond, assignments) =>
          val resolvedCond = cond.map(resolveCond("UPDATE", _, m))
          // the update action can access columns from both target and source tables
          val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = false)
          UpdateAction(resolvedCond, resolvedAssignments)

        case UpdateStarAction(updateCondition) =>
          val resolvedUpdateCondition = updateCondition.map(resolveCond("UPDATE", _, m))
          val assignments = targetTable.output.map { attr =>
            Assignment(attr, UnresolvedAttribute(Seq(attr.name)))
          }
          // for UPDATE *, the value must be from the source table
          val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true)
          UpdateAction(resolvedUpdateCondition, resolvedAssignments)

        case _ =>
          throw new AnalysisException("Matched actions can only contain UPDATE or DELETE")
      }
      // 解析新数据没有匹配旧数据记录时的行为
      val resolvedNotMatchedActions = context.notMatchedActions.map {
        case InsertAction(cond, assignments) =>
          // the insert action is used when not matched, so its condition and value can only
          // access columns from the source table
          val resolvedCond = cond.map(resolveCond("INSERT", _, Project(Nil, m.sourceTable)))
          val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true)
          InsertAction(resolvedCond, resolvedAssignments)

        case InsertStarAction(cond) =>
          // the insert action is used when not matched, so its condition and value can only
          // access columns from the source table
          val resolvedCond = cond.map(resolveCond("INSERT", _, Project(Nil, m.sourceTable)))
          val assignments = targetTable.output.map { attr =>
            Assignment(attr, UnresolvedAttribute(Seq(attr.name)))
          }
          val resolvedAssignments = resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true)
          InsertAction(resolvedCond, resolvedAssignments)

        case _ =>
          throw new AnalysisException("Not matched actions can only contain INSERT")
      }

      val resolvedMergeCondition = resolveCond("SEARCH", context.mergeCondition, m)
      // 返回解析后的MergeIntoIcebergTable逻辑树,方便后续的重写逻辑
      MergeIntoIcebergTable(
        targetTable,
        sourceTable,
        mergeCondition = resolvedMergeCondition,
        matchedActions = resolvedMatchedActions,
        notMatchedActions = resolvedNotMatchedActions)
  }
}

一、重写逻辑计划树

运行时,如果发现当前SQL是MergeIntoIcebergTable,则会生成在生成优化的逻辑计划树时,应用如下的Rule,重写当前的Merge into 逻辑树:

object RewriteMergeIntoTable extends RewriteRowLevelIcebergCommand {
  private final val ROW_FROM_SOURCE = "__row_from_source"
  private final val ROW_FROM_TARGET = "__row_from_target"
  private final val ROW_ID = "__row_id"

  private final val ROW_FROM_SOURCE_REF = FieldReference(ROW_FROM_SOURCE)
  private final val ROW_FROM_TARGET_REF = FieldReference(ROW_FROM_TARGET)
  private final val ROW_ID_REF = FieldReference(ROW_ID)

  override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      // ... 跳过其它情况下的匹配
      case m @ MergeIntoIcebergTable(aliasedTable, source, cond, matchedActions, notMatchedActions, None)
        if m.resolved && m.aligned =>

      EliminateSubqueryAliases(aliasedTable) match {
        case r @ DataSourceV2Relation(tbl: SupportsRowLevelOperations, _, _, _, _) =>
          val table = buildOperationTable(tbl, MERGE, CaseInsensitiveStringMap.empty())
          val rewritePlan = table.operation match {
            case _: SupportsDelta =>
              // 构建增量逻辑计划,table指的是Iceberg目标表,source指的是新数据
              buildWriteDeltaPlan(r, table, source, cond, matchedActions, notMatchedActions)
            case _ =>
              // 否则就是COW模式
              buildReplaceDataPlan(r, table, source, cond, matchedActions, notMatchedActions)
          }

          m.copy(rewritePlan = Some(rewritePlan))

        case p =>
          throw new AnalysisException(s"$p is not an Iceberg table")
      }
}

// build a rewrite plan for sources that support row deltas
private def buildWriteDeltaPlan(
    relation: DataSourceV2Relation,
    operationTable: RowLevelOperationTable,
    source: LogicalPlan,
    cond: Expression,
    matchedActions: Seq[MergeAction],  // 通过ResolveMergeIntoTableReferences规则,从merge sql语句中解析出来,merge行为,例如UPDATE关键字对应于UpdateAction
    notMatchedActions: Seq[MergeAction]): WriteDelta = {

  // resolve all needed attrs (e.g. row ID and any required metadata attrs)
  val rowAttrs = relation.output
  val rowIdAttrs = resolveRowIdAttrs(relation, operationTable.operation)
  val metadataAttrs = resolveRequiredMetadataAttrs(relation, operationTable.operation)

  // construct a scan relation and include all required metadata columns
  // operaionTable表示的待写入的目标表,这是会根据关联条件,构建一个目标表的scan relation
  val readRelation = buildRelationWithAttrs(relation, operationTable, rowIdAttrs ++ metadataAttrs)
  val readAttrs = readRelation.output

  // project an extra column to check if a target row exists after the join
  // 为目标表的数据添加一列,表示该行数据来自于目标表
  val targetTableProjExprs = readAttrs :+ Alias(TrueLiteral, ROW_FROM_TARGET)()
  // 生成目标表的输出数据
  val targetTableProj = Project(targetTableProjExprs, readRelation)

  // project an extra column to check if a source row exists after the join
  // 为新的数据添加一列,表示该行数据来自于新的输入
  val sourceTableProjExprs = source.output :+ Alias(TrueLiteral, ROW_FROM_SOURCE)()
  val sourceTableProj = Project(sourceTableProjExprs, source)

  // use inner join if there is no NOT MATCHED action, unmatched source rows can be discarded
  // use right outer join in all other cases, unmatched source rows may be needed
  // also disable broadcasts for the target table to perform the cardinality check
  val joinType = if (notMatchedActions.isEmpty) Inner else RightOuter
  val joinHint = JoinHint(leftHint = Some(HintInfo(Some(NO_BROADCAST_HASH))), rightHint = None)
  // 将从目标表读取的数据,与新的、待写入的来源表的数据进行JOIN,如果决定忽略不匹配的字段(丢弃)那么会使用inner join,
  // 否则使用right join,由于目标表在JOIN左边,因此也就意味着,最终的Join结果是以新数据为基准,如果成功与目标
  // 表的数据行关联,则说明是要update的数据行;没有新数据没有关联到目标表的数据,则说明是该行数据记录属于新增insert的数据行。
  val joinPlan = Join(NoStatsUnaryNode(targetTableProj), sourceTableProj, joinType, Some(cond), joinHint)

  val deleteRowValues = buildDeltaDeleteRowValues(rowAttrs, rowIdAttrs)
  val metadataReadAttrs = readAttrs.filterNot(relation.outputSet.contains)

  val matchedConditions = matchedActions.map(actionCondition)
  // 创建匹配的数据行的输出meta信息,MergeRowsExec会根据这些信息,生成数据行的投影器,并与matchedConditions合并生成一个matchedPairs的二元组,
  // val matchedPairs = matchedPreds zip matchedProjs
  // MergeRowsExec就以此二元组来应用到数据记录上,得到merge后的、带有操作类型的internal row
  val matchedOutputs = matchedActions.map(deltaActionOutput(_, deleteRowValues, metadataReadAttrs))

  val notMatchedConditions = notMatchedActions.map(actionCondition)
  val notMatchedOutputs = notMatchedActions.map(deltaActionOutput(_, deleteRowValues, metadataReadAttrs))
  // 为merge后的数据添加新的一列,即operation_column,用于标记每一行的记录的类型
  // final val OPERATION_COLUMN: String = "__row_operation"
  // final val DELETE_OPERATION: Int = 1
  // final val UPDATE_OPERATION: Int = 2
  // final val INSERT_OPERATION: Int = 3
  val operationTypeAttr = AttributeReference(OPERATION_COLUMN, IntegerType, nullable = false)()
  val rowFromSourceAttr = resolveAttrRef(ROW_FROM_SOURCE_REF, joinPlan)
  val rowFromTargetAttr = resolveAttrRef(ROW_FROM_TARGET_REF, joinPlan)

  // merged rows must contain values for the operation type and all read attrs
  val mergeRowsOutput = buildMergeRowsOutput(matchedOutputs, notMatchedOutputs, operationTypeAttr +: readAttrs)
  // 生成一个MergeRows的逻辑计划节点,joinPlan作为其上游节点,会对应生成MergeRowsExec物理算子
  val mergeRows = MergeRows(
    isSourceRowPresent = IsNotNull(rowFromSourceAttr),
    isTargetRowPresent = if (notMatchedActions.isEmpty) TrueLiteral else IsNotNull(rowFromTargetAttr),
    matchedConditions = matchedConditions,
    matchedOutputs = matchedOutputs,
    notMatchedConditions = notMatchedConditions,
    notMatchedOutputs = notMatchedOutputs,
    // only needed if emitting unmatched target rows
    targetOutput = Nil,
    rowIdAttrs = rowIdAttrs,
    performCardinalityCheck = isCardinalityCheckNeeded(matchedActions),
    emitNotMatchedTargetRows = false,
    output = mergeRowsOutput,
    joinPlan)

  // build a plan to write the row delta to the table
  val writeRelation = relation.copy(table = operationTable)
  val projections = buildMergeDeltaProjections(mergeRows, rowAttrs, rowIdAttrs, metadataAttrs)
  // WriteDelta会对应生成WriteDeltaExec物理算子,写出增量数据到目标表
  WriteDelta(writeRelation, mergeRows, relation, projections)
}

二、Merge rows合并结果集

case class MergeRowsExec(…) {
// 在每一个Partition数据集上进行验证,根据匹配表达式的结果为每一行数据记录添加标记
private def processPartition(rowIterator: Iterator[InternalRow]): Iterator[InternalRow] = {
  val inputAttrs = child.output

  val isSourceRowPresentPred = createPredicate(isSourceRowPresent, inputAttrs)
  val isTargetRowPresentPred = createPredicate(isTargetRowPresent, inputAttrs)

  val matchedPreds = matchedConditions.map(createPredicate(_, inputAttrs))
  val matchedProjs = matchedOutputs.map {
    case output if output.nonEmpty => Some(createProjection(output, inputAttrs))
    case _ => None
  }
  // matchedPreds,即一个或多个predicate用于判定当前行是不是满足 给定的条件
  // matchedProjs,即一个UnsafeProjection的对象,可以将一个InternalRow写出成一个UnsafeRow,并且带有具体的更新类型,UPDATE/INSERT/DELETE
  val matchedPairs = matchedPreds zip matchedProjs

  val notMatchedPreds = notMatchedConditions.map(createPredicate(_, inputAttrs))
  val notMatchedProjs = notMatchedOutputs.map {
    case output if output.nonEmpty => Some(createProjection(output, inputAttrs))
    case _ => None
  }
  val nonMatchedPairs = notMatchedPreds zip notMatchedProjs

  val projectTargetCols = createProjection(targetOutput, inputAttrs)
  val rowIdProj = createProjection(rowIdAttrs, inputAttrs)

  // This method is responsible for processing a input row to emit the resultant row with an
  // additional column that indicates whether the row is going to be included in the final
  // output of merge or not.
  // 1. Found a target row for which there is no corresponding source row (join condition not met)
  //    - Only project the target columns if we need to output unchanged rows
  // 2. Found a source row for which there is no corresponding target row (join condition not met)
  //    - Apply the not matched actions (i.e INSERT actions) if non match conditions are met.
  // 3. Found a source row for which there is a corresponding target row (join condition met)
  //    - Apply the matched actions (i.e DELETE or UPDATE actions) if match conditions are met.
  // 处理每一行数据,注意这里的结果集是来自于target RIGHT OUTER JOIN source的结果,因此如果目标表的数据行没有出现,
  // 说明当前行是不匹配的;如果source表中的行不存在,则说明行是不匹配的;否则就是目标的行和source表中的行都出现了,
  // 说明当前行是匹配的。
  // 总之,对于最终的结果,source表的数据行有三种状态(新增数据),UPDATE/DELETE/INSERT。
  def processRow(inputRow: InternalRow): InternalRow = {
    // 如果忽略不匹配的行或是源数据行不匹配
    if (emitNotMatchedTargetRows && !isSourceRowPresentPred.eval(inputRow)) {
      projectTargetCols.apply(inputRow)
    } else if (!isTargetRowPresentPred.eval(inputRow)) {
      // 如果是不匹配的数据行,生成一个新的row,并带有相应的操作类型,一般是INSERT,作为第一个字段
      applyProjection(nonMatchedPairs, inputRow)
    } else {
      // 如果是匹配的数据行,则生成一个新的row,并带有相应的操作类型,一般是DELETE或是UPDATE,作为第一个字段
      applyProjection(matchedPairs, inputRow)
    }
  }

  var lastMatchedRowId: InternalRow = null

  def processRowWithCardinalityCheck(inputRow: InternalRow): InternalRow = {
    val isSourceRowPresent = isSourceRowPresentPred.eval(inputRow)
    val isTargetRowPresent = isTargetRowPresentPred.eval(inputRow)

    if (isSourceRowPresent && isTargetRowPresent) {
      val currentRowId = rowIdProj.apply(inputRow)
      if (currentRowId == lastMatchedRowId) {
        throw new SparkException(
          "The ON search condition of the MERGE statement matched a single row from " +
          "the target table with multiple rows of the source table. This could result " +
          "in the target row being operated on more than once with an update or delete " +
          "operation and is not allowed.")
      }
      lastMatchedRowId = currentRowId.copy()
    } else {
      lastMatchedRowId = null
    }

    if (emitNotMatchedTargetRows && !isSourceRowPresent) {
      projectTargetCols.apply(inputRow)
    } else if (!isTargetRowPresent) {
      applyProjection(nonMatchedPairs, inputRow)
    } else {
      applyProjection(matchedPairs, inputRow)
    }
  }

  val processFunc: InternalRow => InternalRow = if (performCardinalityCheck) {
    processRowWithCardinalityCheck
  } else {
    processRow
  }

  rowIterator
    .map(processFunc)
    .filter(row => row != null)
}

}

三、增量数据写出

/**
 * Physical plan node to write a delta of rows to an existing table.
 */
case class WriteDeltaExec(
    query: SparkPlan,
    refreshCache: () => Unit,
    projections: WriteDeltaProjections,
    write: DeltaWrite) extends ExtendedV2ExistingTableWriteExec[DeltaWriter[InternalRow]] {

  override lazy val references: AttributeSet = query.outputSet
  override lazy val stringArgs: Iterator[Any] = Iterator(query, write)
  // 创建增量写出数据的任务,详细定义见后面DeltaWithMetadataWritingSparkTask
  override lazy val writingTask: WritingSparkTask[DeltaWriter[InternalRow]] = {
    DeltaWithMetadataWritingSparkTask(projections)
  }

  override protected def withNewChildInternal(newChild: SparkPlan): WriteDeltaExec = {
    copy(query = newChild)
  }
}

case class DeltaWithMetadataWritingSparkTask(
    projs: WriteDeltaProjections) extends WritingSparkTask[DeltaWriter[InternalRow]] {

  private lazy val rowProjection = projs.rowProjection.orNull
  private lazy val rowIdProjection = projs.rowIdProjection
  private lazy val metadataProjection = projs.metadataProjection.orNull
  // InternalRow来自于Merge后的结果,每一行的第一个字段,标记了当前行的操作类型
  override protected def writeFunc(writer: DeltaWriter[InternalRow], row: InternalRow): Unit = {
    val operation = row.getInt(0)

    operation match {
      case DELETE_OPERATION =>
        rowIdProjection.project(row)
        metadataProjection.project(row)
        // 如果当前数据行被 标记为DELETE,那么就执行删除操作,如果数据来自分区表,那么底层调用PartitionedDeltaWriter::delete(…)方法
        writer.delete(metadataProjection, rowIdProjection)

      case UPDATE_OPERATION =>
        rowProjection.project(row)
        rowIdProjection.project(row)
        metadataProjection.project(row)
       // 同上,如果数据来自分区表,那么底层调用PartitionedDeltaWriter::update(…)方法
        writer.update(metadataProjection, rowIdProjection, rowProjection)

      case INSERT_OPERATION =>
        rowProjection.project(row)
        writer.insert(rowProjection)

      case other =>
        throw new SparkException(s"Unexpected operation ID: $other")
    }
  }
}
/** Spark写出任务,公共接口,提供统一的写出过程 */
trait WritingSparkTask[W <: DataWriter[InternalRow]] extends Logging with Serializable {

  protected def writeFunc(writer: W, row: InternalRow): Unit

  def run(
      writerFactory: DataWriterFactory,
      context: TaskContext,
      iter: Iterator[InternalRow],
      useCommitCoordinator: Boolean,
      customMetrics: Map[String, SQLMetric]): DataWritingSparkTaskResult = {
    val stageId = context.stageId()
    val stageAttempt = context.stageAttemptNumber()
    val partId = context.partitionId()
    val taskId = context.taskAttemptId()
    val attemptId = context.attemptNumber()
    val dataWriter = writerFactory.createWriter(partId, taskId).asInstanceOf[W]

    var count = 0L
    // write the data and commit this writer.
    Utils.tryWithSafeFinallyAndFailureCallbacks(block = {
      while (iter.hasNext) { // 遍历RDD中的每一行
        if (count % CustomMetrics.NUM_ROWS_PER_UPDATE == 0) {
          CustomMetrics.updateMetrics(ArraySeq.unsafeWrapArray(dataWriter.currentMetricsValues), customMetrics)
        }

        // Count is here.
        count += 1
        // 即调用DeltaWithMetadataWritingSparkTask::writeFunc(..)方法,执行真正的写出
        writeFunc(dataWriter, iter.next())
      }

      CustomMetrics.updateMetrics(ArraySeq.unsafeWrapArray(dataWriter.currentMetricsValues), customMetrics)
      // 数据写出完成,向Spark中的OutputCommitCoordinator提交
      val msg = if (useCommitCoordinator) {
        val coordinator = SparkEnv.get.outputCommitCoordinator
        val commitAuthorized = coordinator.canCommit(stageId, stageAttempt, partId, attemptId)
        if (commitAuthorized) {
          logInfo(s"Commit authorized for partition $partId (task $taskId, attempt $attemptId, " +
            s"stage $stageId.$stageAttempt)")
          dataWriter.commit()
        } else {
          val commitDeniedException = QueryExecutionErrors.commitDeniedError(
            partId, taskId, attemptId, stageId, stageAttempt)
          logInfo(commitDeniedException.getMessage)
          // throwing CommitDeniedException will trigger the catch block for abort
          throw commitDeniedException
        }

      } else {
        logInfo(s"Writer for partition ${context.partitionId()} is committing.")
        dataWriter.commit()
      }

      logInfo(s"Committed partition $partId (task $taskId, attempt $attemptId, " +
        s"stage $stageId.$stageAttempt)")

      DataWritingSparkTaskResult(count, msg)

    })(catchBlock = {
      // If there is an error, abort this writer
      logError(s"Aborting commit for partition $partId (task $taskId, attempt $attemptId, " +
        s"stage $stageId.$stageAttempt)")
      dataWriter.abort()
      logError(s"Aborted commit for partition $partId (task $taskId, attempt $attemptId, " +
        s"stage $stageId.$stageAttempt)")
    }, finallyBlock = {
      dataWriter.close()
    })
  }
}

四、分区表数据的增量写出

private static class PartitionedDeltaWriter extends DeleteAndDataDeltaWriter {
  private final PartitionSpec dataSpec;
  private final PartitionKey dataPartitionKey;
  private final InternalRowWrapper internalRowDataWrapper;

  PartitionedDeltaWriter(
      Table table,
      SparkFileWriterFactory writerFactory,
      OutputFileFactory dataFileFactory,
      OutputFileFactory deleteFileFactory,
      Context context) {
    super(table, writerFactory, dataFileFactory, deleteFileFactory, context);

    this.dataSpec = table.spec();
    this.dataPartitionKey = new PartitionKey(dataSpec, context.dataSchema());
    this.internalRowDataWrapper = new InternalRowWrapper(context.dataSparkType());
  }

// 删除旧的数据记录,这里是写出position delete file,此方法实际上是在父类当中的定义的,具体的注释,见DeleteAndDataDeltaWriter类的解析
@Override
public void delete(InternalRow meta, InternalRow id) throws IOException {
  int specId = meta.getInt(specIdOrdinal);
  PartitionSpec spec = specs.get(specId);

  InternalRow partition = meta.getStruct(partitionOrdinal, deletePartitionRowWrapper.size());
  StructProjection partitionProjection = deletePartitionProjections.get(specId);
  partitionProjection.wrap(deletePartitionRowWrapper.wrap(partition));

  String file = id.getString(fileOrdinal);
  long position = id.getLong(positionOrdinal);
  delegate.delete(file, position, spec, partitionProjection);
}

  @Override
  public void update(InternalRow meta, InternalRow id, InternalRow row) throws IOException {
    delete(meta, id); // 删除旧的数据记录,这里是写出position delete file
    dataPartitionKey.partition(internalRowDataWrapper.wrap(row));
    // 写入新的数据行,delegate实际上是一个DeleteAndDataDeltaWriter的实例
    delegate.update(row, dataSpec, dataPartitionKey);
  }

  @Override
  public void insert(InternalRow row) throws IOException {
    dataPartitionKey.partition(internalRowDataWrapper.wrap(row));
    delegate.insert(row, dataSpec, dataPartitionKey);
  }
}
DeleteAndDataDeltaWriter:删除和增量更新的抽象基类
private abstract static class DeleteAndDataDeltaWriter extends BaseDeltaWriter {
  protected final PositionDeltaWriter<InternalRow> delegate;
  private final FileIO io;
  private final Map<Integer, PartitionSpec> specs;
  private final InternalRowWrapper deletePartitionRowWrapper;
  private final Map<Integer, StructProjection> deletePartitionProjections;
  private final int specIdOrdinal;
  private final int partitionOrdinal;
  private final int fileOrdinal;
  private final int positionOrdinal;

  private boolean closed = false;

  DeleteAndDataDeltaWriter(
      Table table,
      SparkFileWriterFactory writerFactory,
      OutputFileFactory dataFileFactory,
      OutputFileFactory deleteFileFactory,
      Context context) {
    this.delegate =
        new BasePositionDeltaWriter<>(
            newInsertWriter(table, writerFactory, dataFileFactory, context),
            newUpdateWriter(table, writerFactory, dataFileFactory, context),
            newDeleteWriter(table, writerFactory, deleteFileFactory, context));
    this.io = table.io();
    this.specs = table.specs();

    Types.StructType partitionType = Partitioning.partitionType(table);
    this.deletePartitionRowWrapper = initPartitionRowWrapper(partitionType);
    this.deletePartitionProjections = buildPartitionProjections(partitionType, specs);

    this.specIdOrdinal = context.metadataSparkType().fieldIndex(MetadataColumns.SPEC_ID.name());
    this.partitionOrdinal =
        context.metadataSparkType().fieldIndex(MetadataColumns.PARTITION_COLUMN_NAME);
    this.fileOrdinal = context.deleteSparkType().fieldIndex(MetadataColumns.FILE_PATH.name());
    this.positionOrdinal =
        context.deleteSparkType().fieldIndex(MetadataColumns.ROW_POSITION.name());
  }

  @Override
  public void delete(InternalRow meta, InternalRow id) throws IOException {
    int specId = meta.getInt(specIdOrdinal);
    PartitionSpec spec = specs.get(specId);

    InternalRow partition = meta.getStruct(partitionOrdinal, deletePartitionRowWrapper.size());
    // 得到指定的specId对应的分区投影器
    StructProjection partitionProjection = deletePartitionProjections.get(specId);
    // 通过分区字段的投影器,解析数据行对应的字段值
    partitionProjection.wrap(deletePartitionRowWrapper.wrap(partition));
    // 被删除的数据记录所在的文件路径
    String file = id.getString(fileOrdinal);
    // 被删除的数据记录在文件中的位置(行号)
    long position = id.getLong(positionOrdinal);
    // 最终会调用ClusteredPositionDeleteWriter::delete(…)方法,写出到position delete 文件,
    // 写出信息,(file, position, partitionProject),会被封装成一个PositionDelete实例,写出到position delete文件,
    // 实际上文件中的一行,因此position delete文件包含的数据行的结构也就很明显了
   // 注意这里的position delete file的数据格式,与Flink模块中的的writer的实现PartitionedDeltaWriter是不同的
    delegate.delete(file, position, spec, partitionProjection);
  }

  @Override
  public WriterCommitMessage commit() throws IOException {
    close();
    // public class WriteResult implements Serializable {
    //   private DataFile[] dataFiles;
    //   private DeleteFile[] deleteFiles;
    //   private CharSequence[] referencedDataFiles;
    // }
    WriteResult result = delegate.result();
    return new DeltaTaskCommit(result);
  }

  @Override
  public void abort() throws IOException {
    close();

    WriteResult result = delegate.result();
    cleanFiles(io, Arrays.asList(result.dataFiles()));
    cleanFiles(io, Arrays.asList(result.deleteFiles()));
  }

  @Override
  public void close() throws IOException {
    if (!closed) {
      delegate.close();
      this.closed = true;
    }
  }

  private PartitioningWriter<InternalRow, DataWriteResult> newInsertWriter(
      Table table,
      SparkFileWriterFactory writerFactory,
      OutputFileFactory fileFactory,
      Context context) {
    long targetFileSize = context.targetDataFileSize();

    if (table.spec().isPartitioned() && context.fanoutWriterEnabled()) {
      return new FanoutDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
    } else {
      return new ClusteredDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
    }
  }

  private PartitioningWriter<InternalRow, DataWriteResult> newUpdateWriter(
      Table table,
      SparkFileWriterFactory writerFactory,
      OutputFileFactory fileFactory,
      Context context) {
    long targetFileSize = context.targetDataFileSize();

    if (table.spec().isPartitioned()) {
      // use a fanout writer for partitioned tables to write updates as they may be out of order
      return new FanoutDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
    } else {
      return new ClusteredDataWriter<>(writerFactory, fileFactory, table.io(), targetFileSize);
    }
  }

  private ClusteredPositionDeleteWriter<InternalRow> newDeleteWriter(
      Table table,
      SparkFileWriterFactory writerFactory,
      OutputFileFactory fileFactory,
      Context context) {
    long targetFileSize = context.targetDeleteFileSize();
    return new ClusteredPositionDeleteWriter<>(
        writerFactory, fileFactory, table.io(), targetFileSize);
  }
}