二、分析方法与过程

主要步骤

购物篮关联规则挖掘主要步骤如下:

  1. 对原始数据进行数据探索性分析,分析商品的热销情况与商品结构。
  2. 对原始数据进行数据预处理,转换数据形式,使之符合Apriori关联规则算法要求。
  3. 在步骤2得到的建模数据基础上,采用Apriori关联规则算法,调整模型输入参数,完成商品关联性分析。
  4. 结合实际业务,对模型结果进行分析,根据分析结果给出销售建议,最后输出关联规则结果。

总体流程

数据挖掘建模的总体流程:

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_数据

 

 

 

数据分析探索

探索数据特征是了解数据的第一步。分析商品热销情况和商品结构,是为了更好地实现企业的经营目标。商品管理应坚持商品齐全和商品优选的原则,产品销售基本满足“二八定律”即80%的销售额是由20%的商品创造的,这些商品是企业主要盈利商品,要作为商品管理的重中之重。商品热销情况分析和商品结构分析也是商品管理不可或缺的一部分,其中商品结构分析能够帮助保证商品的齐全性,热销情况分析可以助力于商品优选。

某商品零售企业共收集了9835个购物篮的数据,购物篮数据主要包括3个属性:id、Goods和Types。属性的具体说明如表所示。

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_数据_02

第一步:数据特征

探索数据的特征,查看每列属性、最大值、最小值,是了解数据的第一步。

import numpy as np
import pandas as pd

inputfile = '../chap8/GoodsOrder.csv'   # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
data .info()  # 查看数据属性

data = data['id']
description = [data.count(),data.min(), data.max()]  # 依次计算总数、最小值、最大值
description = pd.DataFrame(description, index = ['Count','Min', 'Max']).T  # 将结果存入数据框
print('描述性统计结果by number35任:\n',np.round(description))  # 输出结果

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_建模_03

第二步:分析热销商品

商品热销情况分析是商品管理不可或缺的一部分,热销情况分析可以助力于商品优选。计算销量排行前10商品的销量及占比,并绘制条形图显示销量前10商品的销量情况。

 

# 销量排行前10商品的销量及其占比
import pandas as pd
inputfile = '../chap8/GoodsOrder.csv'  # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
group = data.groupby(['Goods']).count().reset_index()  # 对商品进行分类汇总
sorted=group.sort_values('id',ascending=False)
print('销量排行前10商品的销量by number35任:\n', sorted[:10])  # 排序并查看前10位热销商品

# 画条形图展示出销量排行前10商品的销量
import matplotlib.pyplot as plt
x=sorted[:10]['Goods']
y=sorted[:10]['id']
plt.figure(figsize = (8, 4))  # 设置画布大小 
plt.barh(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('销量')  # 设置x轴标题
plt.ylabel('商品类别')  # 设置y轴标题
plt.title('商品的销量TOP10_by number35任')  # 设置标题
plt.savefig('../chap8/top10.png')  # 把图片以.png格式保存
plt.show()  # 展示图片

# 销量排行前10商品的销量占比
data_nums = data.shape[0]
for idnex, row in sorted[:10].iterrows():
    print(row['Goods'],row['id'],row['id']/data_nums)

为了使bar图更好看,我设置了颜色

import random
colors = [[random.random() for _ in range(3)] for _ in range(len(data))]
plt.barh(x,y,color=colors)

参考链接:

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_建模_04

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_数据_05

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_关联规则_06

通过分析热销商品的结果可知,全脂牛奶销售量最高,销量为2513件,占比5.795%;其次是其他蔬菜、面包卷和苏打,占比分别为4.388%、4.171%、3.955%。

第三步:分析商品结构

对每一类商品的热销程度进行分析,有利于商家制定商品在货架的摆放策略和位置,若是某类商品较为热销,商场可以把此类商品摆放到商场的中心位置,方便顾客选购。或者放在商场深处位置,使顾客在购买热销商品前经过非热销商品,增加在非热销商品处的停留时间,促进非热销产品的销量。

原始数据中的商品本身已经过归类处理,但是部分商品还是存在一定的重叠,故再次对其进行归类处理。分析归类后各类别商品的销量及其占比,并绘制饼图显示各类商品的销量占比情况。

 

import pandas as pd
inputfile1 = '../chap8/GoodsOrder.csv'
inputfile2 = '../chap8/GoodsTypes.csv'
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort['index']

sort_links = pd.merge(sort,types)  # 合并两个dataframe 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1 = '../chap8/percent.csv'
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')  # 保存结果

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_建模_07

画饼图展示每类商品销量占比:

# 画饼图展示每类商品销量占比
import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8, 6))  # 设置画布大小   
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('每类商品销量占比_by number35任')  # 设置标题
plt.savefig('../chap8/persent.png')  # 把图片以.png格式保存
plt.show()

 

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_建模_08

通过分析各类别商品的销量及其占比情况可知,非酒精饮料、西点、果蔬三类商品销量差距不大,占总销量的50%左右,同时,根据大类划分发现和食品相关的类的销量总和接近90%,说明了顾客倾向于购买此类产品,而其余商品仅为商场满足顾客的其余需求而设定,并非销售的主力军。

查看销量第一的非酒精饮料类商品的内部商品结构,并绘制饼图显示其销量占比情况:

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2 = '../chap8/child_percent.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_建模_09

# 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("非酒精饮料内部各商品的销量占比_by number35任")  # 设置标题
plt.axis('equal')
plt.savefig('../chap8/child_persent.png')  # 保存图形
plt.show()  # 展示图形

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_数据_10

查看销量第二的西点类商品的内部商品结构,并绘制饼图显示其销量占比情况:

# 先筛选“西点”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '西点']  # 挑选商品类别为“西点”并排序
child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
selected['child_percent_xidian'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('西点内部商品的销量及其占比_by number35任:\n',selected)
outfile2 = '../chap8/child_percent_xidian.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_数据_11

# 画饼图展示西点内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent_xidian']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.05,0.04,0.04,0.05,0.06,0.07,0.03,0.03,0.03,0.02,0.03,0.02,0.02,0.02,0.02,0.08,0.3,0.34,0.38,0.4,0.8)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("西点内部各商品的销量占比_by number35任")  # 设置标题
plt.axis('equal')
plt.savefig('../chap8/child_persent_xidian.png')  # 保存图形
plt.show()  # 展示图形

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_关联规则_12

 

数据预处理

通过对数据探索分析,发现数据数据完整,并不存在缺失值。建模之前需要建模之前需要转变数据的格式,才能使用apriori函数进行关联分析。

模型构建

采用关联规则算法,挖掘它们之间的关联关系。关联规则算法主要用于寻找数据中项集之间的关联关系。它揭示了数据项间的未知关系,基于样本的统计规律,进行关联规则分析。根据所分析的关联关系,可从一个属性的信息来推断另一个属性的信息。当置信度达到某一阈值时,就可以认为规则成立。Apriori算法是常用的关联规则算法之一,也是最为经典的分析频繁项集的算法,第一次实现在大数据集上可行的关联规则提取的算法。除此之外,还有FP-Tree算法,Eclat算法和灰色关联算法等。主要使用Apriori算法进行分析。

第一步:商品购物篮关联规则模型构建

本次商品购物篮关联规则建模的流程如图所示

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_数据_13

模型主要由输入、算法处理、输出3个部分组成。

  • 输入部分包括:建模样本数据的输入;建模参数的输入。
  • 算法处理部分是采用Apriori关联规则算法进行处理。
  • 输出部分为采用Apriori关联规则算法进行处理后的结果。

模型具体实现步骤为:

  • 首先设置建模参数最小支持度、最小置信度,输入建模样本数据;
  • 然后采用Apriori关联规则算法对建模的样本数据进行分析,以模型参数设置的最小支持度、最小置信度以及分析目标作为条件,如果所有的规则都不满足条件,则需要重新调整模型参数,否则输出关联规则结果。

目前,如何设置最小支持度与最小置信度,并没有统一的标准。大部分都是根据业务经验设置初始值,然后经过多次调整,获取与业务相符的关联规则结果。

本例经过多次调整并结合实际业务分析,选取模型的输入参数为:最小支持度0.02、最小置信度0.35。

import pandas as pd
inputfile='../chap8/GoodsOrder.csv'
data = pd.read_csv(inputfile,encoding = 'gbk')

# 根据id对“Goods”列合并,并使用“,”将各商品隔开
data['Goods'] = data['Goods'].apply(lambda x:','+x)
data = data.groupby('id').sum().reset_index()

# 对合并的商品列转换数据格式
data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
data_list = list(data['Goods'])

# 分割商品名为每个元素
data_translation = []
for i in data_list:
    p = i[0].split(',')
    data_translation.append(p)
print('数据转换结果的前5个元素:\n', data_translation[0:5])

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_建模_14

 

 

from numpy import *
 
def loadDataSet():
    return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
            ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]
 
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))     
    
# 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:   # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData = {}  # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support  
    return retList, supportData
 
def calSupport(D, Ck, min_support):
    dict_sup = {}
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = {}
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
# 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData
 
# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
            if L1 == L2:  # 前k-1项相等,则可相乘,这样可防止重复项出现
                # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
                a = Lk[i] | Lk[j]  # a为frozenset()集合
                a1 = list(a)
                b = []
                # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
                for q in range(len(a1)):
                    t = [a1[q]]
                    tt = frozenset(set(a1) - set(t))
                    b.append(tt)
                t = 0
                for w in b:
                    # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
                    if w in Lk:
                        t += 1
                if t == len(b):
                    retList.append(b[0] | b[1])
    return retList

def apriori(dataSet, minSupport=0.2):
# 前3条语句是对计算查找单个元素中的频繁项集
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))  # 使用list()转换为列表
    L1, supportData = calSupport(D, C1, minSupport)
    L = [L1]  # 加列表框,使得1项集为一个单独元素
    k = 2
    while (len(L[k - 2]) > 0):  # 是否还有候选集
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)  # scan DB to get Lk
        supportData.update(supK)  # 把supk的键值对添加到supportData里
        L.append(Lk)  # L最后一个值为空集
        k += 1
    del L[-1]  # 删除最后一个空集
    return L, supportData  # L为频繁项集,为一个列表,1,2,3项集分别为一个元素

# 生成集合的所有子集
def getSubset(fromList, toList):
    for i in range(len(fromList)):
        t = [fromList[i]]
        tt = frozenset(set(fromList) - set(t))
        if not tt in toList:
            toList.append(tt)
            tt = list(tt)
            if len(tt) > 1:
                getSubset(tt, toList)
 
def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
    for conseq in H:  #遍历H中的所有项集并计算它们的可信度值
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 可信度计算,结合支持度数据
        # 提升度lift计算lift = p(a & b) / p(a)*p(b)
        lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq])
 
        if conf >= minConf and lift > 1:
            print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6),
                  'lift值为:', round(lift, 6))
            ruleList.append((freqSet - conseq, conseq, conf))
 
# 生成规则
def gen_rule(L, supportData, minConf = 0.7):
    bigRuleList = []
    for i in range(1, len(L)):  # 从二项集开始计算
        for freqSet in L[i]:  # freqSet为所有的k项集
            # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
            H1 = list(freqSet)
            all_subset = []
            getSubset(H1, all_subset)  # 生成所有的子集
            calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
    return bigRuleList
 
if __name__ == '__main__':
    dataSet = data_translation
    L, supportData = apriori(dataSet, minSupport = 0.02)
    rule = gen_rule(L, supportData, minConf = 0.35)

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_数据_15

第二步:模型分析

根据多次试验,得出了26个关联规则。根据规则结果,可整理出购物篮关联规则模型结果。

购物篮商品关联规则分析实验 请根据CRISP-DM模型完成大数据分析全生命周期工作 ma 购物篮分析步骤_关联规则_16

输出结果分析,顾客购买酸奶和其他蔬菜的时候会同时购买全脂牛奶,其置信度最大达到51,29%。其他蔬菜、根茎类蔬菜和全脂牛奶同时购买的概率较高。

从购物者角度进行分析:现代生活中,大多数购物者为家庭煮妇,购买的商品大部分是食品,随着生活质量和健康意识的增加,其他蔬菜、根茎类蔬菜和全脂牛奶均为现代家庭每日饮食所需品,因此,其他蔬菜、根茎类蔬菜和全脂牛奶同时购买的概率较高符合现代人们的生活健康意识。

第三步:模型应用

模型结果表明顾客购买商品的时候会同时购买全脂牛奶。因此,商场应该根据实际情况将全脂牛奶放在顾客购买商品的必经之路,或者商场显眼位置,方便顾客拿取。其他蔬菜、根茎类蔬菜、酸奶油、猪肉、黄油、本地蛋类和多种水果同时购买的概率较高,可以考虑捆绑销售,或者适当调整商场布置,将这些商品的距离尽量拉近,提升购物体验。