最近看了 @JavaGuide 发布的一篇【面试官问我如何保证Kafka不丢失消息?我哭了!】,这篇文章承接这个主题,来聊聊如何保证 RocketMQ 不丢失消息。


消息的发送流程


一条消息从生产到被消费,将会经历三个阶段:

springboot 整合rocketmq发送顺序消息 多个消费组_rabbitmq如何保证消息不丢失


•  生产阶段, Producer 新建消息,然后通过网络将消息投递给 MQ Broker •  存储阶段,消息将会存储在 Broker 端磁盘中 •  消息阶段, Consumer 将会从 Broker 拉取消息 以上任一阶段都可能会丢失消息,我们只要找到这三个阶段丢失消息原因,采用合理的办法避免丢失,就可以彻底解决消息丢失的问题。


生产阶段


生产者 (Producer) 通过网络发送消息给 Broker ,当 Broker 收到之后,将会返回确认响应信息给 Producer 。所以生产者只要接收到返回的确认响应,就代表消息在生产阶段未丢失。 RocketMQ 发送消息示例代码如下:

DefaultMQProducer mqProducer=new DefaultMQProducer("test");
// 设置 nameSpace 地址
mqProducer.setNamesrvAddr("namesrvAddr");
mqProducer.start();
Message msg = new Message("test_topic" /* Topic */,
"Hello World".getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
);
// 发送消息到一个Broker
try {
    SendResult sendResult = mqProducer.send(msg);
} catch (RemotingException e) {
    e.printStackTrace();
} catch (MQBrokerException e) {
    e.printStackTrace();
} catch (InterruptedException e) {
    e.printStackTrace();
}
DefaultMQProducer mqProducer=new DefaultMQProducer("test");
// 设置 nameSpace 地址
mqProducer.setNamesrvAddr("namesrvAddr");
mqProducer.start();
Message msg = new Message("test_topic" /* Topic */,
"Hello World".getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
);
// 发送消息到一个Broker
try {
    SendResult sendResult = mqProducer.send(msg);
} catch (RemotingException e) {
    e.printStackTrace();
} catch (MQBrokerException e) {
    e.printStackTrace();
} catch (InterruptedException e) {
    e.printStackTrace();
}


send 方法是一个同步操作,只要这个方法不抛出任何异常,就代表消息已经发送成功。 消息发送成功仅代表消息已经到了 Bro ker 端, Broker 在不同配置下,可能会返回不同响应状态: •  SendStatus.SEND_OK •  SendStatus.FLUSH_DISK_TIMEOUT •  SendStatus.FLUSH_SLAVE_TIMEOUT •  SendStatus.SLAVE_NOT_AVAILABLE 引用官方状态说明:

springboot 整合rocketmq发送顺序消息 多个消费组_rabbitmq如何保证消息不丢失_02


上图中不同 broker 端配置将会在下文详细解释 另外 RocketMQ 还提供异步的发送的方式,适合于链路耗时较长,对响应时间较为敏感的业务场景。

DefaultMQProducer mqProducer = new DefaultMQProducer("test");
// 设置 nameSpace 地址
mqProducer.setNamesrvAddr("127.0.0.1:9876");
mqProducer.setRetryTimesWhenSendFailed(5);
mqProducer.start();
Message msg = new Message("test_topic" /* Topic */,
"Hello World".getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
);

try {
// 异步发送消息到,主线程不会被阻塞,立刻会返回
    mqProducer.send(msg, new SendCallback() {
@Override
public void onSuccess(SendResult sendResult) {
// 消息发送成功,
        }

@Override
public void onException(Throwable e) {
// 消息发送失败,可以持久化这条数据,后续进行补偿处理
        }
    });
} catch (RemotingException e) {
    e.printStackTrace();
} catch (InterruptedException e) {
    e.printStackTrace();
}
DefaultMQProducer mqProducer = new DefaultMQProducer("test");
// 设置 nameSpace 地址
mqProducer.setNamesrvAddr("127.0.0.1:9876");
mqProducer.setRetryTimesWhenSendFailed(5);
mqProducer.start();
Message msg = new Message("test_topic" /* Topic */,
"Hello World".getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
);

try {
// 异步发送消息到,主线程不会被阻塞,立刻会返回
    mqProducer.send(msg, new SendCallback() {
@Override
public void onSuccess(SendResult sendResult) {
// 消息发送成功,
        }

@Override
public void onException(Throwable e) {
// 消息发送失败,可以持久化这条数据,后续进行补偿处理
        }
    });
} catch (RemotingException e) {
    e.printStackTrace();
} catch (InterruptedException e) {
    e.printStackTrace();
}


异步发送消息一定要注意重写回调方法,在回调方法中检查发送结果。 不管是同步还是异步的方式,都会碰到网络问题导致发送失败的情况。针对这种情况,我们可以设置合理的重试次数,当出现网络问题,可以自动重试。设置方式如下:

// 同步发送消息重试次数,默认为 2
mqProducer.setRetryTimesWhenSendFailed(3);
// 异步发送消息重试次数,默认为 2
mqProducer.setRetryTimesWhenSendAsyncFailed(3);
// 同步发送消息重试次数,默认为 2
mqProducer.setRetryTimesWhenSendFailed(3);
// 异步发送消息重试次数,默认为 2
mqProducer.setRetryTimesWhenSendAsyncFailed(3);

Broker 存储阶段

默认情况下,消息只要到了 Broker 端,将会优先保存到内存中,然后立刻返回确认响应给生产者。随后 Broker 定期批量的将一组消息从内存异步刷入磁盘。 这种方式减少 I/O 次数,可以取得更好的性能,但是如果发生机器掉电,异常宕机等情况,消息还未及时刷入磁盘,就会出现丢失消息的情况。 若想保证 Broker 端不丢消息,保证消息的可靠性,我们需要将消息保存机制修改为同步刷盘方式,即消息存储磁盘成功,才会返回响应。 修改 Broker 端配置如下:

## 默认情况为 ASYNC_FLUSH
flushDiskType = SYNC_FLUSH
## 默认情况为 ASYNC_FLUSH
flushDiskType = SYNC_FLUSH



若 Broker 未在同步刷盘时间内 (默认为 5s) 完成刷盘,将会返回 SendStatus.FLUSH_DISK_TIMEOUT 状态给生产者。 1. 集群部署

为了保证可用性, Broker 通常采用一主 (master) 多从 (slave) 部署方式。为了保证消息不丢失,消息还需要复制到 slave 节点。 默认方式下,消息写入 master 成功,就可以返回确认响应给生产者,接着消息将会异步复制到 slave 节点。

注:master 配置:flushDiskType = SYNC_FLUSH


此时若 master 突然宕机且不可恢复,那么还未复制到 slave 的消息将会丢失。 为了进一步提高消息的可靠性,我们可以采用同步的复制方式, master 节点将会同步等待 slave 节点复制完成,才会返回确认响应。 异步复制与同步复制区别如下图:

springboot 整合rocketmq发送顺序消息 多个消费组_发送消息_03

注:大家不要被上图误导,broker master 只能配置一种复制方式,上图只为解释同步复制的与异步复制的概念。


Broker master 节点 同步复制配置如下:

## 默认为 ASYNC_MASTER
brokerRole=SYNC_MASTER
## 默认为 ASYNC_MASTER
brokerRole=SYNC_MASTER



如果 slave 节点未在指定时间内同步返回响应,生产者将会收到 SendStatus.FLUSH_SLAVE_TIMEOUT 返回状态。 2. 小结

结合生产阶段与存储阶段,若需要严格保证消息不丢失, broker 需要采用如下配置:  

## master 节点配置
flushDiskType = SYNC_FLUSH
brokerRole=SYNC_MASTER

## slave 节点配置
brokerRole=slave
flushDiskType = SYNC_FLUSH
## master 节点配置
flushDiskType = SYNC_FLUSH
brokerRole=SYNC_MASTER

## slave 节点配置
brokerRole=slave
flushDiskType = SYNC_FLUSH



同时这个过程我们还需要生产者配合,判断返回状态是否是 SendStatus.SEND_OK 。若是其他状态,就需要考虑补偿重试。 虽然上述配置提高消息的高可靠性,但是会降低性能,生产实践中需要综合选择。


消费阶段


消费者从 broker 拉取消息,然后执行相应的业务逻辑。一旦执行成功,将会返回 ConsumeConcurrentlyStatus.CONSUME_SUCCESS 状态给 Broker 。 如果 Broker 未收到消费确认响应或收到其他状态,消费者下次还会再次拉取到该条消息,进行重试。这样的方式有效避免了消费者消费过程发生异常,或者消息在网络传输中丢失的情况。 消息消费的代码如下:  

// 实例化消费者
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("test_consumer");

// 设置NameServer的地址
consumer.setNamesrvAddr("namesrvAddr");

// 订阅一个或者多个Topic,以及Tag来过滤需要消费的消息
consumer.subscribe("test_topic", "*");
// 注册回调实现类来处理从broker拉取回来的消息
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) {// 执行业务逻辑// 标记该消息已经被成功消费return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
    }
});// 启动消费者实例
consumer.start();
// 实例化消费者
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("test_consumer");

// 设置NameServer的地址
consumer.setNamesrvAddr("namesrvAddr");

// 订阅一个或者多个Topic,以及Tag来过滤需要消费的消息
consumer.subscribe("test_topic", "*");
// 注册回调实现类来处理从broker拉取回来的消息
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) {// 执行业务逻辑// 标记该消息已经被成功消费return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
    }
});// 启动消费者实例
consumer.start();


以上消费消息过程的,我们需要注意返回消息状态。只有当业务逻辑真正执行成功,我们才能返回 ConsumeConcurrentlyStatus.CONSUME_SUCCESS 。否则我们需要返回 ConsumeConcurrentlyStatus.RECONSUME_LATER ,稍后再重试。


总结


看完 RocketMQ 不丢消息处理办法,回头再看这篇  kafka ,有没有发现,两者解决思路是一样的,区别就是参数配置不一样而已。 所以下一次,面试官再问你 XX 消息队列如何保证不丢消息?如果你没用过这个消息队列,也不要哭,微笑面对他,从容给他分析那几步会丢失,然后大致解决思路。 最后我们还可以说出我们的思考,虽然提高消息可靠性,但是可能导致消息重发,重复消费。所以对于消费客户端,需要注意保证幂等性。


但是要注意了,这时面试官可能就会跟你的话题,让你来聊聊如何保证幂等性,一定先想好再说哦~


Reference

消息队列高手课 https://github.com/apache/rocketmq/blob/master/docs/cn/best_practice.md