因为要参加软考了(当然也只有考试有这种魅力),我得了概浮点数转化为二进制表示这个最难的知识点(个人认为最难)。俺结合大量的从网上收集而来的资料现整理如下,希望对此知识点感兴趣的pfan有所帮助。

基础知识:

十进制转十六进制;

十六进制转二进制;

IEEE制定的浮点数表示规则;

了解:

目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格: 
符号位 阶码 尾数 长度 
float     1          8        23      32 
double          1         11        52      64

以下通过几个例子讲解浮点数如何转换为二进制数

例一:

已知:double类型38414.4。

求:其对应的二进制表示。

分析:double类型共计64位,折合8字节。由最高到最低位分别是第63、62、61、……、0位: 
最高位63位是符号位,1表示该数为负,0表示该数为正; 
    62-52位,一共11位是指数位; 
    51-0位,一共52位是尾数位。 
步骤:按照IEEE浮点数表示法,下面先把38414.4转换为十六进制数。 
把整数部和小数部分开处理:整数部直接化十六进制:960E。小数的处理: 
0.4=0.5*0+0.25*1+0.125*1+0.0625*0+…… 
实际上这永远算不完!这就是著名的浮点数精度问题。所以直到加上前面的整数部分算够53位就行了。隐藏位技术:最高位的1不写入内存(最终保留下来的还是52位)。 
如果你够耐心,手工算到53位那么因该是:38414.4(10)=1001011000001110.0110011001100110011001100110011001100(2)

科学记数法为:1.001011000001110 0110011001100110011001100110011001100,右移了15位,所以指数为15。或者可以如下理解:

1.001011000001110 0110011001100110011001100110011001100×2^15 
于是来看阶码,按IEEE标准一共11位,可以表示范围是-1024 ~ 1023。因为指数可以为负,为了便于计算,规定都先加上1023(2^10-1),在这里,阶码:15+1023=1038。二进制表示为:100 00001110; 
符号位:因为38414.4为正对应 为0; 
合在一起(注:尾数二进制最高位的1不要): 
01000000 11100010 11000001 110 01100  11001100  11001100  11001100  11001100