Pytorch——LeNet和AlexNet实现

1 LeNet模型

1.1 基本结构

LeNet分为卷积层和全连接层两个部分。

  1. 卷积层块里的基本单位是卷积层后接最大池化层,卷积层用来识别图像里的空间模式。之后使用最大池化层则用于降低卷积层对于位置的敏感性。整个的卷积部分由这两个基本的单位重复堆叠构成。卷积层的输出形状为(Batch,通道数量,高,宽)。当卷积层快的输出传入到全连接层快的时候,全连接层快会将Batch中的每一个样本进行展开(flatten),也就是说,全连接层的输入是一个二维矩阵,第一个维度是batch_size,第二个维度是样本展开之后的向量表示,向量的长度为通道、高和宽的乘积。
1.2 代码展示
#encoding=utf-8

import time
import torch
import torch.nn as nn
import torchvision.datasets
import torchvision.transforms as transforms

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet,self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1,6,5),
            nn.Sigmoid(),
            nn.MaxPool2d(2,2),
            nn.Conv2d(6,16,5),
            nn.Sigmoid(),
            nn.MaxPool2d(2,2)
        )
        self.fc = nn.Sequential(
            nn.Linear(16*4*4,120),
            nn.Sigmoid(),
            nn.Linear(120,84),
            nn.Linear(84,10)
        )
    def forward(self,img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0],-1))
        return output

#定义准确率估计
def evaluate_accuracy(data_iter,net,device=None):
    if device is None and isinstance(net,torch.nn.Module):
        device = list(net.parameters())[0].device
    acc_sum , n = 0.0 ,0
    with torch.no_grad(): #在测试的时候不需要求导
        for X,y in data_iter:
            if isinstance(net,torch.nn.Module):  #判断net是否是nn.Module类型
                net.eval()
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()
            else:
                if ('is_training' in net.__code__.co_varnames):  # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            n += y.shape[0]
    return acc_sum / n
# 定义训练函数
def train(net,train_iter,test_iter,batch_size,optimizer,device, num_epochs):
    net = net.to(device)
    print("training on ",device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epoches):
        train_loss_sum,train_acc_sum,n,batch_count,start = 0.0,0.0,0,0,time.time()
        for X,y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            loss_value = loss(y_hat,y)
            optimizer.zero_grad()
            loss_value.backward()
            optimizer.step()
            train_loss_sum += loss_value
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter,net)
        print("epoch %d,loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec"
              %(epoch + 1, loss_value / batch_count, train_acc_sum / n, test_acc, time.time() - start))



#获取数据集
batch_size = 256
mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=4)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=4)
# 定义超参数
lr = 0.001
num_epoches = 5
net = LeNet()
optimizer = torch.optim.Adam(net.parameters(),lr= lr)


if __name__ == '__main__':

    train(net,train_iter,test_iter,batch_size,optimizer,device,num_epoches)

2 AlexNet

2.1 基本结构

AlexNet和LeNet的设计非常类似,但是在结构上存在一些差别。

  1. AlexNet的结构比LeNet规模更大,AlexNet包含8层变换,其中包含5层卷积和2层全连接隐藏层,以及最后的一个全连接的输出层。
  2. 在AlextNet中,第一层中的卷积核的size为1111.第二层中的卷积核的size为55,之后的卷积核的size全部为33.此外,第1,2,5个卷积层的之后都使用了size为33,步长为2的最大池化。
  3. 紧接着最后一个卷积层是两个输出个数位4096的全连接层。
  4. AlexNet采用了丢弃法来控制全连接层的模型复杂度。而LeNet没有使用丢弃。
  5. AlexNet引入了大量的图像变换,如旋转,裁剪,颜色变换等等,进一步扩大了数据集来缓解数据过拟合的问题。

pytorch 浮雕效果_pytorch 浮雕效果

2.2 代码实现
#encoding=utf-8

import time
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet,self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1,96,11,4),
            nn.ReLU(),
            nn.MaxPool2d(3,2),
            nn.Conv2d(96,256,5,1,2),
            nn.ReLU(),
            nn.MaxPool2d(3,2),
            nn.Conv2d(256,384,3,1,1),
            nn.ReLU(),
            nn.Conv2d(384,384,3,1,1),
            nn.ReLU(),
            nn.Conv2d(384,256,3,1,1),
            nn.ReLU(),
            nn.MaxPool2d(3,2))
        self.fc = nn.Sequential(
            nn.Linear(256*5*5,4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096,10)
        )
    def forward(self,img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0],-1))
        return output

net = AlexNet()
if __name__ == '__main__':
    print(net)

3 总结

这里我们给出了LeNet和AlexNet的基本结构和代码实现。

4 参考

  1. 动手学深度学习—Pytorch版