1、有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练:
pretrained_params = torch.load('Pretrained_Model')
model = The_New_Model(xxx)
model.load_state_dict(pretrained_params.state_dict(), strict=False)
strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃。
2、如果载入的这些参数中,有些参数不要求被更新,即固定不变,不参与训练,需要手动设置这些参数的梯度属性为Fasle,并且在optimizer传参时筛选掉这些参数:
# 载入预训练模型参数后...
for name, value in model.named_parameters():
if name 满足某些条件:
value.requires_grad = False
# setup optimizer
params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.Adam(params, lr=1e-4)
将满足条件的参数的 requires_grad 属性设置为False, 同时 filter 函数将模型中属性 requires_grad = True 的参数帅选出来,传到优化器(以Adam为例)中,只有这些参数会被求导数和更新。
3、如果载入的这些参数中,所有参数都更新,但要求一些参数和另一些参数的更新速度(学习率learning rate)不一样,最好知道这些参数的名称都有什么:
# 载入预训练模型参数后...
for name, value in model.named_parameters():
print(name)
# 或
print(model.state_dict().keys())
假设该模型中有encoder,viewer和decoder两部分,参数名称分别是:
'encoder.visual_emb.0.weight',
'encoder.visual_emb.0.bias',
'viewer.bd.Wsi',
'viewer.bd.bias',
'decoder.core.layer_0.weight_ih',
'decoder.core.layer_0.weight_hh',
假设要求encode、viewer的学习率为1e-6, decoder的学习率为1e-4,那么在将参数传入优化器时:
ignored_params = list(map(id, model.decoder.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer = torch.optim.Adam([{'params':base_params,'lr':1e-6},
{'params':model.decoder.parameters()}
],
lr=1e-4, momentum=0.9)
代码的结果是除decoder参数的learning_rate=1e-4 外,其他参数的额learning_rate=1e-6。
在传入optimizer时,和一般的传参方法torch.optim.Adam(model.parameters(), lr=xxx)
不同,参数部分用了一个list, list的每个元素有params
和lr
两个键值。如果没有 lr
则应用Adam的lr
属性。Adam的属性除了lr
, 其他都是参数所共有的(比如momentum
)。
参考:
- pytorch官方文档
</div>
<link href="" rel="stylesheet">
</div>
1、有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练:
pretrained_params = torch.load('Pretrained_Model')
model = The_New_Model(xxx)
model.load_state_dict(pretrained_params.state_dict(), strict=False)
strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃。
2、如果载入的这些参数中,有些参数不要求被更新,即固定不变,不参与训练,需要手动设置这些参数的梯度属性为Fasle,并且在optimizer传参时筛选掉这些参数:
# 载入预训练模型参数后...
for name, value in model.named_parameters():
if name 满足某些条件:
value.requires_grad = False