在使用Python进行信号处理过程中,利用 scipy.signal.filtfilt()可以快速帮助实现信号的滤波。

1.函数的介绍

(1).滤波函数

scipy.signal.filtfilt(b, a, x, axis=-1, padtype=‘odd’, padlen=None, method=‘pad’, irlen=None)

输入参数:

b: 滤波器的分子系数向量

a: 滤波器的分母系数向量

x: 要过滤的数据数组。(array型)

axis: 指定要过滤的数据数组x的轴

padtype: 必须是“奇数”、“偶数”、“常数”或“无”。这决定了用于过滤器应用的填充信号的扩展类型。{‘odd’, ‘even’, ‘constant’, None}

padlen:在应用滤波器之前在轴两端延伸X的元素数目。此值必须小于要滤波元素个数- 1。(int型或None)

method:确定处理信号边缘的方法。当method为“pad”时,填充信号;填充类型padtype和padlen决定,irlen被忽略。当method为“gust”时,使用古斯塔夫森方法,而忽略padtype和padlen。{“pad” ,“gust”}

irlen:当method为“gust”时,irlen指定滤波器的脉冲响应的长度。如果irlen是None,则脉冲响应的任何部分都被忽略。对于长信号,指定irlen可以显著改善滤波器的性能。(int型或None)

输出参数:

y:滤波后的数据数组

(2).滤波器构造函数(仅介绍Butterworth滤波器)

scipy.signal.butter(N, Wn, btype=‘low’, analog=False, output=‘ba’)

输入参数:

N:滤波器的阶数

Wn:归一化截止频率。计算公式Wn=2*截止频率/采样频率。(注意:根据采样定理,采样频率要大于两倍的信号本身最大的频率,才能还原信号。截止频率一定小于信号本身最大的频率,所以Wn一定在0和1之间)。当构造带通滤波器或者带阻滤波器时,Wn为长度为2的列表。

btype : 滤波器类型{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’},

output : 输出类型{‘ba’, ‘zpk’, ‘sos’},

输出参数:

b,a: IIR滤波器的分子(b)和分母(a)多项式系数向量。output=‘ba’

z,p,k: IIR滤波器传递函数的零点、极点和系统增益. output= ‘zpk’

sos: IIR滤波器的二阶截面表示。output= ‘sos’

2.函数的使用

信号滤波中最常用的无非低通滤波、高通滤波和带通滤波。下面简单介绍这三种滤波的使用过程:

(1).高通滤波

#这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除10hz以下频率成分,即截至频率为10hz,则wn=2*10/1000=0.02

from scipy import signal
b, a = signal.butter(8, 0.02, ‘highpass’)
 filtedData = signal.filtfilt(b, a, data)#data为要过滤的信号

(2).低通滤波

#这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除10hz以上频率成分,即截至频率为10hz,则wn=2*10/1000=0.02

from scipy import signal
b, a = signal.butter(8, 0.02, ‘lowpass’)
 filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号

(3).带通滤波

#这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除10hz以下和400hz以上频率成分,即截至频率为10hz和400hz,则wn1=210/1000=0.02,wn2=2400/1000=0.8。Wn=[0.02,0.8]

from scipy import signal
b, a = signal.butter(8, [0.02,0.8], ‘bandpass’)
 filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号