Single GPU

单卡时,一次 nvidia-smi 的输出形如:

Tue Aug  9 23:05:08 2022       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.44       Driver Version: 440.44       CUDA Version: 10.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  TITAN Xp            Off  | 00000000:01:00.0 Off |                  N/A |
| 37%   58C    P2    75W / 250W |   8481MiB / 12195MiB |      2%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      2292      C   python                                      8467MiB |
+-----------------------------------------------------------------------------+

其中 8481MiB / 12195MiB 显示了已用显存、显存总量。现用 shell 命令计算可用显存大小:

  • (2024.10.20)查询各卡可用显存时,可直接用 nvidia-smi --query-gpu=memory.free --format=csv,noheader,nounits 获得,而不用像这里展示这样自己手动处理。iTomxy/ml-template/scripts/find-gpu.sh 已更新,本文不更新,当几个相关 shell 命令的用法参考。
  • (2023.6.12)遇到 GPU Fan 是 100% 时,如:|100% 88C P2 95W / 280W | 13900MiB / 24576MiB | 100% Default |,第一个 | 会跟后面的 100% 连在一起,成为同一列,使列计数出错,故要先用 sed "s/^|//" 删掉开头的 |,而列数相应地减 1,成 $8$10
nvidia-smi | \
	grep -E "[0-9]+MiB\s*/\s*[0-9]+MiB" | \
	sed "s/^|//" | \
	awk '{print ($8" "$10)}' | \
	sed "s/\([0-9]\{1,\}\)MiB \([0-9]\{1,\}\)MiB/\1 \2/" | \
	awk '{print $2 - $1}'

其中:

  • | 管道,将前一命令结果传给后一命令;\ 续行;
  • grep -E "[0-9]+MiB\s*/\s*[0-9]+MiB" 筛出包含使用情况的那行输出,得:
| 37%   58C    P2    75W / 250W |   8481MiB / 12195MiB |      2%      Default |
  • (2023.6.12)sed "s/^|//" 删掉开头的 |,得:
37%   58C    P2    75W / 250W |   8481MiB / 12195MiB |      2%      Default |
  • awk '{print ($9" "$11)}'awk '{print ($8" "$10)}' 筛出已用显存、显存总量两列核心数据(这里是该行的第 9 列和第 11 列 第 8 列和第 10 列),空格间开,得:
8481MiB 12195MiB
  • sed "s/\([0-9]\{1,\}\)MiB \([0-9]\{1,\}\)MiB/\1 \2/"去掉 MiB 后缀(括号括住匹配组,\1\2 引用匹配到的字符串),得:
8481 12195
  • awk '{print $2 - $1}' 计算两列的差,算得可用显存,得:
3714

Multiple GPUs

多卡时的输出形如:

Sun Aug 14 20:44:33 2022       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.23.05    Driver Version: 455.23.05    CUDA Version: 11.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce RTX 3090    On   | 00000000:4F:00.0 Off |                  N/A |
| 30%   28C    P8    29W / 350W |   2381MiB / 24268MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  GeForce RTX 3090    On   | 00000000:52:00.0 Off |                  N/A |
| 30%   29C    P8    33W / 350W |      0MiB / 24268MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   2  GeForce RTX 3090    On   | 00000000:56:00.0 Off |                  N/A |
| 35%   57C    P2   257W / 350W |  12437MiB / 24268MiB |     48%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   3  GeForce RTX 3090    On   | 00000000:57:00.0 Off |                  N/A |
| 30%   32C    P8    28W / 350W |      0MiB / 24268MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   4  GeForce RTX 3090    On   | 00000000:CE:00.0 Off |                  N/A |
| 35%   59C    P2   274W / 350W |  12353MiB / 24268MiB |     67%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   5  GeForce RTX 3090    On   | 00000000:D1:00.0 Off |                  N/A |
| 36%   58C    P2   263W / 350W |  12439MiB / 24268MiB |     75%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   6  GeForce RTX 3090    On   | 00000000:D5:00.0 Off |                  N/A |
| 36%   61C    P2   266W / 350W |  12355MiB / 24268MiB |     59%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   7  GeForce RTX 3090    On   | 00000000:D6:00.0 Off |                  N/A |
| 36%   61C    P2   275W / 350W |  12437MiB / 24268MiB |     50%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A   3948645      C   python                           2379MiB |
|    2   N/A  N/A   1097294      C   python                          12435MiB |
|    4   N/A  N/A   1200625      C   python                          12351MiB |
|    5   N/A  N/A   1193557      C   python                          12437MiB |
|    6   N/A  N/A   1187226      C   python                          12353MiB |
|    7   N/A  N/A   1185608      C   python                          12435MiB |
+-----------------------------------------------------------------------------+

直接用单卡的命令就可以输出各卡的可用显存大小。可以另外加个循环显示显卡号,方便指定特定显卡:

res=$(nvidia-smi | \
	grep -E "[0-9]+MiB\s*/\s*[0-9]+MiB" | \
	sed "s/^|//" | \
	awk '{print ($8" "$10)}' | \
	sed "s/\([0-9]\{1,\}\)MiB \([0-9]\{1,\}\)MiB/\1 \2/" | \
	awk '{print $2 - $1}')

i=0
for s in $res; do
    echo $i: $s
    i=`expr 1 + $i`
done

在命令行中指定显卡参考 [1]。从 0 号开始,指定 23 号卡跑形如:

CUDA_VISIBLE_DEVICES=2,3 \
python main.py

GPU Finding

as embedding function

按照 GPU 可用显存降序,找可用显存大于某一阈值的 GPU 卡号列表,作为 CUDA_VISIBLE_DEVICES 的参数。

# 全局变量
gpu_id=-1

find_gpu()
{
    res=$(nvidia-smi | \
        grep -E "[0-9]+MiB\s*/\s*[0-9]+MiB" | \
        sed "s/^|//" | \
        awk '{print ($8" "$10)}' | \
        sed "s/\([0-9]\{1,\}\)MiB \([0-9]\{1,\}\)MiB/\1 \2/" | \
        awk '{print $2 - $1}')

	# 按可用显存降序排列
	# 格式:<GPU ID> <FREE MEMORY>
	# 外套 `()` 可以转为列表
	i=0
	res=($(for s in $res; do echo $i $s && i=`expr 1 + $i`; done | \
		sort -n -k 2 -r))

	# 第一个参数:需要 GPU 数,默认 = 1
	n_gpu_req=${1-"1"}
	# 第二个参数:可用显存下界,超过才选,默认 = 0
	mem_lb=${2-"0"}
	echo "Requiring ${n_gpu_req} GPUs with at least ${mem_lb}MB free memory"

    gpu_id=-1
    n=0
	for i in $(seq 0 2 `expr ${#res[@]} - 1`); do
		gid=${res[i]}
		mem=${res[i+1]}
		echo $gid: $mem
		if [ $n -lt ${n_gpu_req} -a $mem -ge ${mem_lb} ]; then
			if [ $n -eq 0 ]; then
				gpu_id=$gid
			else
				gpu_id=${gpu_id}","$gid
			fi
			n=`expr 1 + $n`
		else
			# 要么够数,要么后面的 GPU 可用显存都不够(因为已经降序排)
			break
		fi
    done

	# if [ $n -lt ${n_gpu_req} ]; then
}

# 用例
find_gpu 3
CUDA_VISIBLE_DEVICES=${gpu_id} \
python main.py

as seperated script

上面将 find_gpu 写在同一文件内,会使得命令文件变臃肿。可以将 find_gpu 写成一份单独的 shell script,然后调用。跨脚本之间的变量引用见 [5-7]。

#!/bin/bash
# find-gpu.sh

# 第一个参数:需要 GPU 数,默认 = 1
n_gpu_req=${1-"1"}
# 第二个参数:可用显存下界,超过才选,默认 = 0
mem_lb=${2-"0"}
# 第三个参数:匹配模式,默认 = b
#   b = best fit,最少但足够显存的卡优先
#   w = worst fit,最多且足够显存的卡优先
mode=${3-"b"}
# 剩余参数: 忽略的 GPU IDs
_ignore=${@:4}

res=$(nvidia-smi | \
	grep -E "[0-9]+MiB\s*/\s*[0-9]+MiB" | \
	sed "s/^|//" | \
    awk '{print ($8" "$10)}' | \
	sed "s/\([0-9]\{1,\}\)MiB \([0-9]\{1,\}\)MiB/\1 \2/" | \
	awk '{print $2 - $1}')

i=0
if [ $mode == "b" ]; then
	res=($(for s in $res; do echo $i $s && i=`expr 1 + $i`; done | \
		 sort -n -k 2))
else
	res=($(for s in $res; do echo $i $s && i=`expr 1 + $i`; done | \
		 sort -n -k 2 -r))
fi

gpu_id=-1
n_gpu_found=0
for i in $(seq 0 2 `expr ${#res[@]} - 1`); do
	gid=${res[i]}
	mem=${res[i+1]}
	
	_flag=0 # 是否忽略此 gpu
	for _ig in ${_ignore[@]}; do
		if [ $_ig -eq $_gid ]; then
			_flag=1
			break
		fi
	done
	if [ $_flag -eq 1 ]; then continue; fi
	
	# echo $gid: $mem
	if [ ${n_gpu_found} -lt ${n_gpu_req} -a $mem -ge ${mem_lb} ]; then
		if [ ${n_gpu_found} -eq 0 ]; then
			gpu_id=$gid
		else
			gpu_id=${gpu_id}","$gid
		fi
		n_gpu_found=`expr 1 + ${n_gpu_found}`
	# else
	# 	break
	fi
done

# echo found: ${n_gpu_found}: ${gpu_id}
  • 调用脚本
# example.sh
echo before: $gpu_id  # 空
# 注意调用格式
# **不**是 `bash find_gpu.sh ...`
# 而是用一点 `.`
. ./find-gpu.sh 5
echo after: $gpu_id  # 7,6,5,4,3

CUDA_VISIBLE_DEVICES=${gpu_id} \
python main.py
  • 关于 . 调用(. --help):
.: . filename [arguments]
    Execute commands from a file in the current shell.
    
    Read and execute commands from FILENAME in the current shell.  The
    entries in $PATH are used to find the directory containing FILENAME.
    If any ARGUMENTS are supplied, they become the positional parameters
    when FILENAME is executed.
    
    Exit Status:
    Returns the status of the last command executed in FILENAME; fails if
    FILENAME cannot be read.

Parallel Running & GPU Waiting

可以并行运行多个任务时,shell 监视有无够显存的可用,若有启动一个进程放去后台跑,无则等待:

#!/bin/bash
set -e

for d in `ls data`; do
	# 找/等 GPU
	while true; do
	    . scripts/find-gpu.sh 1 7051
	    # 如果没有可用 GPU 就等 15min
	    if [ $gpu_id == "-1" ]; then sleep 15m; else break; fi
	done

	echo $d
	LD_LIBRARY_PATH=$HOME/miniconda3/envs/pt110/lib:$LD_LIBRARY_PATH \
	CUDA_VISIBLE_DEVICES=$gpu_id \
	python do_not_answer.py --input $d &

	# 等 20s 让它启动,确保等下剩余显存、进程数计算/记数正确
	sleep 20

	# 数有几多个进程在跑,超过 4 个占卡太多了会被骂,清一拨
	n=$(ps aux | grep do_not_answer.py | wc -l)
	if [ $n -gt 4 ]; then wait; fi
done
wait

References

  1. 在pytorch中指定显卡
  2. Linux Shell sort排序常用命令
  3. In bash, how to sort strings with numbers in them?
  4. shell 变量的默认值
  5. shell 调用其他shell脚本中的变量、函数
  6. shell脚本之引用另一个文件中的变量
  7. Shell 跨脚本间变量传递
  8. 在实验室或公司如何优雅的抢占GPU显卡?
  9. Linux统计文件夹下的文件数目