用Unity实现FXAA
FXAA是现代的常用抗锯齿手段之一,这次我们来在Unity中从零开始实现它。
首先我们来看一个测试场景,我们在Game视角下将scale拉到2x:
可以看到画面的锯齿比较严重,下面我们将一步一步地实现FXAA,消除锯齿。首先,FXAA是一种降低整个画面对比度的手段,通过降低对比度来消除掉明显的锯齿和一些孤立的像素。而衡量对比度的一种方式就是计算像素的亮度。那么,我们先新建一个后处理效果,计算整个画面上像素的亮度,Unity内置了API LinearRgbToLuminance
来进行计算亮度:
// Convert rgb to luminance
// with rgb in linear space with sRGB primaries and D65 white point
half LinearRgbToLuminance(half3 linearRgb)
{
return dot(linearRgb, half3(0.2126729f, 0.7151522f, 0.0721750f));
}
看一下亮度图长啥样:
有了亮度信息,接下来就可以计算对比度了。我们取当前像素周围上下左右4个像素的亮度信息,然后分别计算出它们的最大值和最小值,最大值和最小值之差作为当前像素的对比度:
struct LuminanceData {
float m, n, e, s, w;
float highest, lowest, contrast;
};
LuminanceData SampleLuminanceNeighborhood (float2 uv) {
LuminanceData l;
l.m = SampleLuminance(uv);
l.n = SampleLuminance(uv, 0, 1);
l.e = SampleLuminance(uv, 1, 0);
l.s = SampleLuminance(uv, 0, -1);
l.w = SampleLuminance(uv,-1, 0);
l.highest = max(max(max(max(l.n, l.e), l.s), l.w), l.m);
l.lowest = min(min(min(min(l.n, l.e), l.s), l.w), l.m);
l.contrast = l.highest - l.lowest;
return l;
}
float4 ApplyFXAA (float2 uv) {
LuminanceData l = SampleLuminanceNeighborhood(uv);
return l.contrast;
}
对于对比度比较小的像素,我们应该将其过滤掉。这里可以使用绝对阈值和相对阈值,来过滤值比较小或者相对周围值比较小的对比度:
bool ShouldSkipPixel (LuminanceData l) {
float threshold =
max(_ContrastThreshold, _RelativeThreshold * l.highest);
return l.contrast < threshold;
}
float4 ApplyFXAA (float2 uv) {
LuminanceData l = SampleLuminanceNeighborhood(uv);
if (ShouldSkipPixel(l)) {
return 0;
}
return l.contrast;
}
有了对比度信息之后,下一步就是要考虑如何根据对比度对像素进行融合。显然,当前像素周围的像素亮度差异越大,融合的比例越高。为了比较准确地计算周围像素的亮度,这次把对角的像素也考虑进来。当然,对角的像素所占的权重会相对低一些:
float DeterminePixelBlendFactor (LuminanceData l) {
float filter = 2 * (l.n + l.e + l.s + l.w);
filter += l.ne + l.nw + l.se + l.sw;
filter *= 1.0 / 12;
filter = abs(filter - l.m);
filter = saturate(filter / l.contrast);
return filter;
}
float4 ApplyFXAA (float2 uv) {
LuminanceData l = SampleLuminanceNeighborhood(uv);
if (ShouldSkipPixel(l)) {
return 0;
}
float pixelBlend = DeterminePixelBlendFactor(l);
return pixelBlend;
}
为了让blend系数平滑一点,也可以加上smoothstep和square:
float DeterminePixelBlendFactor (LuminanceData l) {
float filter = 2 * (l.n + l.e + l.s + l.w);
filter += l.ne + l.nw + l.se + l.sw;
filter *= 1.0 / 12;
filter = abs(filter - l.m);
filter = saturate(filter / l.contrast);
float blendFactor = smoothstep(0, 1, filter);
return blendFactor * blendFactor;
}
有了融合系数之后,接下来就要考虑怎么融合,对哪两个像素进行融合。我们的目标是降低整个画面的对比度,也就是说要对亮度差异比较大的像素进行融合。这里可以先简单地假设,不同亮度的区域是由水平方向或者竖直方向区分开的,然后比较水平方向的亮度差异和竖直方向的亮度差异,最终决定融合的方向:
struct EdgeData {
bool isHorizontal;
};
EdgeData DetermineEdge (LuminanceData l) {
EdgeData e;
float horizontal =
abs(l.n + l.s - 2 * l.m) * 2 +
abs(l.ne + l.se - 2 * l.e) +
abs(l.nw + l.sw - 2 * l.w);
float vertical =
abs(l.e + l.w - 2 * l.m) * 2 +
abs(l.ne + l.nw - 2 * l.n) +
abs(l.se + l.sw - 2 * l.s);
e.isHorizontal = horizontal >= vertical;
return e;
}
float4 ApplyFXAA (float2 uv) {
LuminanceData l = SampleLuminanceNeighborhood(uv);
if (ShouldSkipPixel(l)) {
return 0;
}
float pixelBlend = DeterminePixelBlendFactor(l);
EdgeData e = DetermineEdge(l);
return e.isHorizontal ? float4(1, 0, 0, 0) : 1;
}
来看一下画面中有哪些像素融合时会选择水平方向:
选择水平方向作为亮度区域的分界线,意味着融合时需要选取竖直方向上的像素。但是竖直方向上也有正负两个选择。类似地,我们比较正负方向的亮度差异,哪个差异更大,就选哪个:
float pLuminance = e.isHorizontal ? l.n : l.e;
float nLuminance = e.isHorizontal ? l.s : l.w;
float pGradient = abs(pLuminance - l.m);
float nGradient = abs(nLuminance - l.m);
e.pixelStep =
e.isHorizontal ? _MainTex_TexelSize.y : _MainTex_TexelSize.x;
if (pGradient < nGradient) {
e.pixelStep = -e.pixelStep;
}
来看一下画面中有哪些像素融合时会选择负方向:
现在万事俱备,可以真正开始blend了。首先我们需要把tex2D
换成tex2Dlod
来避免mipmap带来的干扰;其次我们可以借助纹理过滤来帮我们自动blend,即采样点位于两个像素之间,根据融合系数的大小,调整采样点到两个像素的距离:
float4 Sample (float2 uv) {
return tex2Dlod(_MainTex, float4(uv, 0, 0));
}
float4 ApplyFXAA (float2 uv) {
LuminanceData l = SampleLuminanceNeighborhood(uv);
if (ShouldSkipPixel(l)) {
return Sample(uv);
}
float pixelBlend = DeterminePixelBlendFactor(l);
EdgeData e = DetermineEdge(l);
if (e.isHorizontal) {
uv.y += e.pixelStep * pixelBlend;
}
else {
uv.x += e.pixelStep * pixelBlend;
}
return float4(Sample(uv).rgb, l.m);
}
我们还可以再加上一个外部控制融合系数的参数,这样就可以动态看到不同融合强度下的效果:
但实际上分隔线的长度不一定只有3个像素大小,我们可以通过计算当前像素和分隔线另一侧的像素的亮度平均值,作为分隔线的亮度,然后不断地沿着这条线向两端进行采样,当采样得到的亮度和分隔线的亮度有明显差异时,就认为找到了这条线的末端:
我们设定每一端的最大查找次数为10:
float DetermineEdgeBlendFactor (LuminanceData l, EdgeData e, float2 uv) {
float2 uvEdge = uv;
float2 edgeStep;
if (e.isHorizontal) {
uvEdge.y += e.pixelStep * 0.5;
edgeStep = float2(_MainTex_TexelSize.x, 0);
}
else {
uvEdge.x += e.pixelStep * 0.5;
edgeStep = float2(0, _MainTex_TexelSize.y);
}
float edgeLuminance = (l.m + e.oppositeLuminance) * 0.5;
float gradientThreshold = e.gradient * 0.25;
float2 puv = uvEdge + edgeStep;
float pLuminanceDelta = SampleLuminance(puv) - edgeLuminance;
bool pAtEnd = abs(pLuminanceDelta) >= gradientThreshold;
for (int i = 0; i < 9 && !pAtEnd; i++) {
puv += edgeStep;
pLuminanceDelta = SampleLuminance(puv) - edgeLuminance;
pAtEnd = abs(pLuminanceDelta) >= gradientThreshold;
}
float2 nuv = uvEdge - edgeStep;
float nLuminanceDelta = SampleLuminance(nuv) - edgeLuminance;
bool nAtEnd = abs(nLuminanceDelta) >= gradientThreshold;
for (int i = 0; i < 9 && !nAtEnd; i++) {
nuv -= edgeStep;
nLuminanceDelta = SampleLuminance(nuv) - edgeLuminance;
nAtEnd = abs(nLuminanceDelta) >= gradientThreshold;
}
return pAtEnd || nAtEnd;
}
看看找到的分隔线:
当然,寻找分隔线端点的步长也不一定是定值,可以灵活设置,并且在超过最大迭代次数时,可以大胆地往前步进一个步长,作为预测结果:
#define EDGE_STEP_COUNT 10
#define EDGE_STEPS 1, 1.5, 2, 2, 2, 2, 2, 2, 2, 4
#define EDGE_GUESS 8
static const float edgeSteps[EDGE_STEP_COUNT] = { EDGE_STEPS };
for (int i = 2; i < EDGE_STEP_COUNT && !pAtEnd; i++) {
puv += edgeStep * edgeSteps[i];
pLuminanceDelta = SampleLuminance(puv) - edgeLuminance;
pAtEnd = abs(pLuminanceDelta) >= gradientThreshold;
}
if (!pAtEnd) {
puv += edgeStep * EDGE_GUESS;
}
接下来,我们需要确定一下融合的系数。首先,越靠近端点的像素,融合的系数越大;其次,端点像素亮度要和当前像素亮度要在分隔线的同一侧,即都要比分隔线亮度更大或者更小:
float pDistance, nDistance;
if (e.isHorizontal) {
pDistance = puv.x - uv.x;
nDistance = uv.x - nuv.x;
}
else {
pDistance = puv.y - uv.y;
nDistance = uv.y - nuv.y;
}
float shortestDistance;
bool deltaSign;
if (pDistance <= nDistance) {
shortestDistance = pDistance;
deltaSign = pLuminanceDelta >= 0;
}
else {
shortestDistance = nDistance;
deltaSign = nLuminanceDelta >= 0;
}
if (deltaSign == (l.m - edgeLuminance >= 0)) {
return 0;
}
return 0.5 - shortestDistance / (pDistance + nDistance);
最后,我们得到了两种计算方式下的融合系数,简单粗暴点,直接取max作为最终效果: