连接速腾16线激光雷达,录制rslidar_points的bag文件:

rosbag record /rslidar_packets -O bag

然后需要将bag文件转换成.bin文件,先转成pcd:

rosrun pcl_ros bag_to_pcd data.bag /rslidar_points ./pcd

pcd是创建的存放.pcd文件的位置

然后转成.bin文件

# -*- coding: utf-8 -*- 
# @Time : 2022/7/25 11:30 
# @Author : JulyLi
# @File : pcd2bin.py

import numpy as np
import os
import argparse
from pypcd import pypcd
import csv
from tqdm import tqdm


def main():
    ## Add parser
    parser = argparse.ArgumentParser(description="Convert .pcd to .bin")
    parser.add_argument(
        "--pcd_path",
        help=".pcd file path.",
        type=str,
        default="pcd4"
    )
    parser.add_argument(
        "--bin_path",
        help=".bin file path.",
        type=str,
        default="bin4"
    )
    parser.add_argument(
        "--file_name",
        help="File name.",
        type=str,
        default="file_name"
    )
    args = parser.parse_args()

    ## Find all pcd files
    pcd_files = []
    for (path, dir, files) in os.walk(args.pcd_path):
        for filename in files:
            # print(filename)
            ext = os.path.splitext(filename)[-1]
            if ext == '.pcd':
                pcd_files.append(path + "/" + filename)

    ## Sort pcd files by file name
    pcd_files.sort()
    print("Finish to load point clouds!")

    ## Make bin_path directory
    try:
        if not (os.path.isdir(args.bin_path)):
            os.makedirs(os.path.join(args.bin_path))
    except OSError as e:
        # if e.errno != errno.EEXIST:
        #     print("Failed to create directory!!!!!")
            raise

    ## Generate csv meta file
    csv_file_path = os.path.join(args.bin_path, "meta.csv")
    csv_file = open(csv_file_path, "w")
    meta_file = csv.writer(
        csv_file, delimiter=",", quotechar="|", quoting=csv.QUOTE_MINIMAL
    )
    ## Write csv meta file header
    meta_file.writerow(
        [
            "pcd file name",
            "bin file name",
        ]
    )
    print("Finish to generate csv meta file")

    ## Converting Process
    print("Converting Start!")
    seq = 0
    for pcd_file in tqdm(pcd_files):
        ## Get pcd file
        pc = pypcd.PointCloud.from_path(pcd_file)

        ## Generate bin file name
        # bin_file_name = "{}_{:05d}.bin".format(args.file_name, seq)
        bin_file_name = "{:05d}.bin".format(seq)
        bin_file_path = os.path.join(args.bin_path, bin_file_name)

        ## Get data from pcd (x, y, z, intensity, ring, time)
        np_x = (np.array(pc.pc_data['x'], dtype=np.float32)).astype(np.float32)
        np_y = (np.array(pc.pc_data['y'], dtype=np.float32)).astype(np.float32)
        np_z = (np.array(pc.pc_data['z'], dtype=np.float32)).astype(np.float32)
        np_i = (np.array(pc.pc_data['intensity'], dtype=np.float32)).astype(np.float32) / 256
        # np_r = (np.array(pc.pc_data['ring'], dtype=np.float32)).astype(np.float32)
        # np_t = (np.array(pc.pc_data['time'], dtype=np.float32)).astype(np.float32)

        ## Stack all data
        points_32 = np.transpose(np.vstack((np_x, np_y, np_z, np_i)))

        ## Save bin file
        points_32.tofile(bin_file_path)

        ## Write csv meta file
        meta_file.writerow(
            [os.path.split(pcd_file)[-1], bin_file_name]
        )

        seq = seq + 1


if __name__ == "__main__":
    main()

然后开始标定 采用labelCloud 开源三维点云工具标注自制点云数据集

1.以如下命令安装:

git clone https://github.com/ch-sa/labelCloud.git

2.建议在Conda环境下新建一个虚拟环境安装标注软件所需的依赖,因为系统自带的python3是3.6的,可能会存在一些问题,新建一个虚拟环境就非常清爽:

conda create -n label3.8 python=3.8 -y

3.进入创建的虚拟环境:

conda activate label3.8

4.在下载的标注软件labelCloud路径下启动配置的虚拟环境,安装相关依赖:

pip install -r requirements.txt

5.启动软件:

python labelCloud.py

 生成对应的标签后,需要使用openpcdet进行标定。安装过程中会存在较多的版本安装问题,作者采用的方式如下:

首先创建一个虚拟环境:

conda create -n pcdetect python=3.8
conda activate pcdetect

这里如果用python3.7的话后面会有一个av2包的报错无法解决,因为av2只支持python3.8及以上,显示说没有与3.7适配的版本。

git clone https://ghproxy.com/https://github.com/open-mmlab/OpenPCDet.git

下载好openpcd的包以后,下载这个包:

git clone https://github.com/AbangLZU/EasyPointPillars

主要是参考其中requirments.txt的版本,然后这个是大佬写的简化版本,也是可以直接用的配置什么的都比较简单。我的是cuda10,所以将OpenPCDet其中的pytorch设置为1.4.0,torchvision设置为0.5.0。

后续:
cd OpenPCDet或者大佬的那个包 为最后还是用cd EasyPointPillars大佬修改过的版本了可能因为我的cuda10.0太低了用OpenPCDet时,spconv一直有问题
pip install -r requirements.txt
python setup.py develop

随后是安装spconv,确保torch的版本是1.4.0:

git clone https://github.com/AbangLZU/spconv.git  --recursive

编译:

python setup.py bdist_wheel

安装:

cd dist/
 pip install the_wheel_file_you_produced.whl然后训练模型,模型修改部分参考:
存在报错1.python相对包导入失败的是没有重新编译好
报错2:
RuntimeError:
normalize(Tensor input, float p=2., int dim=1, float eps=9.9999999999999998e-13, Tensor? out=None) -> (Tensor):
 Expected a value of type 'float' for argument 'p' but instead found type 'int'.
 :
   File "/home/a/miniconda3/envs/pc3.8/lib/python3.8/site-packages/kornia/geometry/conversions.py", line 362
             "Input must be a tensor of shape (*, 4). Got {}".format(
                 quaternion.shape))
     return F.normalize(quaternion, p=2, dim=-1, eps=eps)
            ~~~~~~~~~~~ <--- HERE
 'normalize_quaternion' is being compiled since it was called from 'quaternion_to_rotation_matrix'
   File "/home/a/miniconda3/envs/pc3.8/lib/python3.8/site-packages/kornia/geometry/conversions.py", line 396
                 quaternion.shape))
     # normalize the input quaternion
     quaternion_norm: torch.Tensor = normalize_quaternion(quaternion)
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE    # unpack the normalized quaternion components
 'quaternion_to_rotation_matrix' is being compiled since it was called from 'quat_to_mat'
   File "/home/a/OpenPCDet/pcdet/datasets/argo2/argo2_utils/so3.py", line 19
         (...,3,3) 3D rotation matrices.
     """
     return C.quaternion_to_rotation_matrix(
            ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
         quat_wxyz, order=C.QuaternionCoeffOrder.WXYZ
     )

还以为是哪里没写好,其实是标签文件train.txt里面是六位的如000000,而为实际的bin文件是五位的,如00000.bin所以存在问题。

问题3:

ValueError: need at least one array to concatenate

因为我是3个标签,实际只用了一个,一开始以为是不能设置3个得设置一个,后来发现是因为有几个标签是空的,在train.txt里删除对应的空标签即可正常运行。

然后开始训练:

python tools/train.py --cfg_file tools/cfgs/custom_models/pointrcnn.yaml --batch_size=2 --epochs=300

出现报错:

  File "/home/a/OpenPCDet/pcdet/utils/spconv_utils.py", line 4, in <module>
    if float(spconv.__version__[2:]) >= 2.2:
AttributeError: module 'spconv' has no attribute '__version__'