在上一篇(RabbitMQ消息队列(四)),实现的是单个生产者向单个消费者发送消息。在本篇文章中,实现的是单个生产者向多个消费者发送的功能。如下图所示:
1、发送方
package com.wb.rabbitmq.demo3workQueues;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
public class NewTask {
private static final String QUEUE_NAME = "hello";// 消息队列名称
private static String getMessage(String[] strings) {
if (strings.length < 1)
return "Hello World!";
return joinStrings(strings, " ");
}
private static String joinStrings(String[] strings, String delimiter) {
int length = strings.length;
if (length == 0)
return "";
StringBuilder words = new StringBuilder(strings[0]);
for (int i = 1; i < length; i++) {
words.append(delimiter).append(strings[i]);
}
return words.toString();
}
public static void main(String[] argv) throws java.io.IOException {
ConnectionFactory factory = new ConnectionFactory();// 创建RabbitMQ连接工厂
factory.setHost("localhost");// RabbitMQ服务器IP地址,若在本地安装,则为localhost
Connection connection = factory.newConnection();// 创建RabbitMQ连接
Channel channel = connection.createChannel();// 创建RabbitMQ连接channel
channel.queueDeclare(QUEUE_NAME, false, false, false, null);
String message = getMessage(argv);// 传送的消息
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
System.out.println(" [x] Sent '" + message + "'");
// 调用完毕,别忘记关闭channel、connection
channel.close();
connection.close();
}
}
2、接收方
package com.wb.rabbitmq.demo3workQueues;
import java.io.IOException;
import com.rabbitmq.client.AMQP;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.Consumer;
import com.rabbitmq.client.DefaultConsumer;
import com.rabbitmq.client.Envelope;
public class Worker {
private final static String QUEUE_NAME = "hello";// 队列名称,与发送方保持一致
private static void doWork(String task) throws InterruptedException {
for (char ch : task.toCharArray()) {
if (ch == '.')
Thread.sleep(1000);
}
}
public static void main(String[] argv) throws java.io.IOException, java.lang.InterruptedException {
ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
Connection connection = factory.newConnection();
Channel channel = connection.createChannel();
channel.queueDeclare(QUEUE_NAME, false, false, false, null);
System.out.println(" [*] Waiting for messages. To exit press CTRL+C");
final Consumer consumer = new DefaultConsumer(channel) {
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties,
byte[] body) throws IOException {
String message = new String(body, "UTF-8");
System.out.println(" [x] Received '" + message + "'");
try {
doWork(message);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
System.out.println(" [x] Done");
}
}
};
boolean autoAck = true; // acknowledgment is covered below
channel.basicConsume(QUEUE_NAME, autoAck, consumer);
}
}
3、运行验证
在这里需要用终端运行java文件。
1、项目下,target目录下
打开目录 ../rabbitmq/target/classes/com/wb/rabbitmq/demo3workQueues
拷贝NewTask.class Worker.class Worker$1.class 文件到 ../rabbitmq/src/java/com/wb/rabbitmq/demo3workQueues
2、下载 amqp-client-4.0.2.jar ,拷贝到 ../rabbitmq/src/java
3、打开两个终端,执行(开启两个worker)
java -cp .:amqp-client-3.0.4.jar com.wb.rabbitmq.demo3workQueues.Worker
4、再打开一个终端,分配任务,(发送消息)
java -cp .:amqp-client-3.0.4.jar com.wb.rabbitmq.demo3workQueues.NewTask 1.......
默认情况下,RabbitMQ 会顺序的分发每个Message。当每个收到ack后,会将该Message删除,然后将下一个Message分发到下一个Consumer。这种分发方式叫做round-robin。这种分发还有问题,接着向下读吧。
4. Message acknowledgment 消息确认
每个Consumer可能需要一段时间才能处理完收到的数据。如果在这个过程中,Consumer出错了,异常退出了,而数据还没有处理完成,那么非常不幸,这段数据就丢失了。因为我们采用no-ack的方式进行确认,也就是说,每次Consumer接到数据后,而不管是否处理完成,RabbitMQ Server会立即把这个Message标记为完成,然后从queue中删除了。
如果一个Consumer异常退出了,它处理的数据能够被另外的Consumer处理,这样数据在这种情况下就不会丢失了(注意是这种情况下)。
为了保证数据不被丢失,RabbitMQ支持消息确认机制,即acknowledgments。为了保证数据能被正确处理而不仅仅是被Consumer收到,那么我们不能采用no-ack。而应该是在处理完数据后发送ack。
在处理数据后发送的ack,就是告诉RabbitMQ数据已经被接收,处理完成,RabbitMQ可以去安全的删除它了。
如果Consumer退出了但是没有发送ack,那么RabbitMQ就会把这个Message发送到下一个Consumer。这样就保证了在Consumer异常退出的情况下数据也不会丢失。
这里并没有用到超时机制。RabbitMQ仅仅通过Consumer的连接中断来确认该Message并没有被正确处理。也就是说,RabbitMQ给了Consumer足够长的时间来做数据处理。
默认情况下,消息确认是打开的(enabled)。在上篇文章中我们通过no_ack = True 关闭了ack。重新修改一下callback,以在消息处理完成后发送ack:
这样即使你通过Ctr-C中断了worker.class,那么Message也不会丢失了,它会被分发到下一个Consumer。
channel.basicQos(1); // accept only one unack-ed message at a time (see below)
final Consumer consumer = new DefaultConsumer(channel) {
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
String message = new String(body, "UTF-8");
System.out.println(" [x] Received '" + message + "'");
try {
doWork(message);
} finally {
System.out.println(" [x] Done");
channel.basicAck(envelope.getDeliveryTag(), false);
}
}
};
boolean autoAck = false;
channel.basicConsume(TASK_QUEUE_NAME, autoAck, consumer);
如果忘记了ack,那么后果很严重。当Consumer退出时,Message会重新分发。然后RabbitMQ会占用越来越多的内存,由于RabbitMQ会长时间运行,因此这个“内存泄漏”是致命的。去调试这种错误。
4. Message durability消息持久化
在上一节中我们知道了即使Consumer异常退出,Message也不会丢失。但是如果RabbitMQ Server退出呢?软件都有bug,即使RabbitMQ Server是完美毫无bug的(当然这是不可能的,是软件就有bug,没有bug的那不叫软件),它还是有可能退出的:被其它软件影响,或者系统重启了,系统panic了。。。
为了保证在RabbitMQ退出或者crash了数据仍没有丢失,需要将queue和Message都要持久化。
queue的持久化需要在声明时指定durable=True:
boolean durable = true;
channel.queueDeclare("hello", durable, false, false, null);
但是确得不到我们想要的结果,原因就是RabbitMQ Server已经维护了一个叫hello的queue,那么上述执行不会有任何的作用,也就是hello的任何属性都不会被影响。这一点在上篇文章也讨论过。
那么workaround也很简单,声明一个另外的名字的queue,比如名字定位task_queue:
boolean durable = true;
channel.queueDeclare("task_queue", durable, false, false, null);
[python] view plain copy
1. channel.queue_declare(queue='task_queue', durable=True)
再次强调,Producer和Consumer都应该去创建这个queue,尽管只有一个地方的创建是真正起作用的:
接下来,需要持久化Message,即在Publish的时候指定一个properties,方式如下:
import com.rabbitmq.client.MessageProperties;
channel.basicPublish("", "task_queue",
MessageProperties.PERSISTENT_TEXT_PLAIN,
message.getBytes());
关于持久化的进一步讨论:
为了数据不丢失,我们采用了:
- 在数据处理结束后发送ack,这样RabbitMQ Server会认为Message Deliver 成功。
- 持久化queue,可以防止RabbitMQ Server 重启或者crash引起的数据丢失。
- 持久化Message,理由同上。
但是这样能保证数据100%不丢失吗?
答案是否定的。问题就在与RabbitMQ需要时间去把这些信息存到磁盘上,这个time window虽然短,但是它的确还是有。在这个时间窗口内如果数据没有保存,数据还会丢失。还有另一个原因就是RabbitMQ并不是为每个Message都做fsync:它可能仅仅是把它保存到Cache里,还没来得及保存到物理磁盘上。
因此这个持久化还是有问题。但是对于大多数应用来说,这已经足够了。当然为了保持一致性,你可以把每次的publish放到一个transaction中。这个transaction的实现需要user defined codes。
那么商业系统会做什么呢?一种可能的方案是在系统panic时或者异常重启时或者断电时,应该给各个应用留出时间去flash cache,保证每个应用都能exit gracefully。
5. Fair dispatch 公平分发
你可能也注意到了,分发机制不是那么优雅。默认状态下,RabbitMQ将第n个Message分发给第n个Consumer。当然n是取余后的。它不管Consumer是否还有unacked Message,只是按照这个默认机制进行分发。
那么如果有个Consumer工作比较重,那么就会导致有的Consumer基本没事可做,有的Consumer却是毫无休息的机会。那么,RabbitMQ是如何处理这种问题呢?
basic.qos 方法设置prefetch_count=1 。这样RabbitMQ就会使得每个Consumer在同一个时间点最多处理一个Message。换句话说,在接收到该Consumer的ack前,他它不会将新的Message分发给它。 设置方法如下:
int prefetchCount = 1;
channel.basicQos(prefetchCount);
注意,这种方法可能会导致queue满。当然,这种情况下你可能需要添加更多的Consumer,或者创建更多的virtualHost来细化你的设计。