我们是否总是重复着单调乏味无趣的工作呢?有没有一种方法可以让我们的工作效率事半功倍呢?接下来给大家分享三个有趣的小技巧

一、解析PDF(简历内推)

应用场景:简历内推(解析内容:包括不限于姓名、邮箱、电话号码、学历等信息)

输入:要解析的文件路径

输出:需要解析的内容

环境准备:python 3.6 、mac(下文中doc转docx是mac写法,windows更简单,导入win32的包即可)

依赖包

from pdfminer.pdfparser import PDFParser

from pdfminer.pdfdocument import PDFDocument

from pdfminer.pdfpage import PDFPage

from pdfminer.pdfinterp import PDFResourceManager

from pdfminer.pdfinterp import PDFPageInterpreter

from pdfminer.layout import LAParams

from pdfminer.converter import PDFPageAggregator
 
def pdf_reader(file):
    fp = open(file, "rb")
    # 创建一个与文档相关联的解释器
    parser = PDFParser(fp)
    # PDF文档对象
    doc = PDFDocument(parser)
    # 链接解释器和文档对象
    parser.set_document(doc)
    # doc.set_paeser(parser)
    # 初始化文档
    # doc.initialize("")
    # 创建PDF资源管理器
    resource = PDFResourceManager()
    # 参数分析器
    laparam = LAParams()
    # 创建一个聚合器
    device = PDFPageAggregator(resource, laparams=laparam)
    # 创建PDF页面解释器
    interpreter = PDFPageInterpreter(resource, device)
    # 使用文档对象得到页面集合
    res = ''
    for page in PDFPage.create_pages(doc):
        # 使用页面解释器来读取
        interpreter.process_page(page)
        # 使用聚合器来获取内容
        layout = device.get_result()
        for out in layout:
            if hasattr(out, "get_text"):
                res = res + '' + out.get_text()
    return res

二、发送邮件

有几个模块用于访问互联网以及处理网络通信协议。其中最简单的两个是用于处理从 usrl 接收的数据的 urllib.request 以及用于发送电子邮件的 smtplib:

smtpObj = smtplib.SMTP( [host [, port [, local_hostname]]] )

参数说明:

  • host: SMTP 服务器主机。 你可以指定主机的ip地址或者域名如: - ----http://runoob.com,这个是可选参数。
  • port: 如果你提供了 host 参数, 你需要指定 SMTP 服务使用的端口号,一般情况下 SMTP 端口号为25。
  • local_hostname: 如果 SMTP 在你的本机上,你只需要指定服务器地址为 localhost 即可。
  • Python SMTP 对象使用 sendmail 方法发送邮件,语法如下:
SMTP.sendmail(from_addr, to_addrs, msg[, mail_options, rcpt_options])

参数说明

  • from_addr: 邮件发送者地址。
  • to_addrs: 字符串列表,邮件发送地址。
  • msg: 发送消息

案例

from email.mime.text import MIMEText

from email.header import Header

sender = 'from@runoob.com'

receivers = ['1221121@qq.com']  # 接收邮件,可设置为你的QQ邮箱或者其他邮箱

# 三个参数:第一个为文本内容,第二个 plain 设置文本格式,第三个 utf-8 设置编码

message = MIMEText('Python 邮件发送测试...', 'plain', 'utf-8')

message['From'] = Header("不吃西红柿", 'utf-8')   # 发送者

message['To'] =  Header("测试", 'utf-8')        # 接收者

subject = 'Python SMTP 邮件测试'

message['Subject'] = Header(subject, 'utf-8')

    smtpObj = smtplib.SMTP('localhost')

    smtpObj.sendmail(sender, receivers, message.as_string())

except smtplib.SMTPException:

    print "Error: 无法发送邮件"

三、操作exel

1. 关联公式:Vlookup

vlookup是excel几乎最常用的公式,一般用于两个表的关联查询等。所以我先把这张表分为两个表。

df1["订单明细号"].duplicated().value_counts()

df2["订单明细号"].duplicated().value_counts()

df_c=pd.merge(df1,df2,on="订单明细号",how="left")

2.数据透视表

需求:想知道每个地区的业务员分别赚取的利润总和与利润平均数

pd.pivot_table(sale,index="地区名称",columns="业务员名称",values="利润",aggfunc=[np.sum,np.mean])

3. 对比两列差异

需求:比较订单明细号与订单明细号2的差异并显示出来。

sale["订单明细号2"]=sale["订单明细号"]

sale["订单明细号2"][1:10]=sale["订单明细号2"][1:10]+1

result=sale.loc[sale["订单明细号"].isin(sale["订单明细号2"])==False]

4. 去除重复值

需求:去除业务员编码的重复值

sale.drop_duplicates("业务员编码",inplace=True)

5. 缺失值处理

sale["客户名称"]=sale["客户名称"].fillna(0)

sale.dropna(subset=["客户编码"])

6. 多条件筛选

需求:想知道业务员张爱,在北京区域卖的商品订单金额大于6000的信息。

sale.loc[(sale["地区名称"]=="北京")&(sale["业务员名称"]=="张爱")&(sale["订单金额"]>5000)]

7. 模糊筛选数据

需求:筛选存货名称含有"三星"或则含有"索尼"的信息。

sale.loc[sale["存货名称"].str.contains("三星|索尼")]

8. 分类汇总

需求: 北京区域各业务员的利润总额。

sale.groupby(["地区名称","业务员名称"])["利润"].sum()

9. 条件计算

需求:存货名称含“三星字眼”并且税费高于1000的订单有几个?这些订单的利润总和和平均利润是多少?(或者最小值,最大值,四分位数,标注差)

sale.loc[sale["存货名称"].str.contains("三星")&(sale["税费"]>=1000)][["订单明细号","利润"]].describe()
  1. 删除数据间的空格

需求:删除存货名称两边的空格。

sale["存货名称"].map(lambda s :s.strip(""))