使用python+Opencv实现瞳孔识别与跟踪
使用opencv做瞳孔识别是十分方便的,它有很多好用的库可以直接使用。
废话不多说,直接上代码。
import cv2
import numpy as np
cap = cv2.VideoCapture("eyes.mp4")
while (True):
ret, frame = cap.read()
if ret is False:
break
roi = frame[100: 500, 157: 800] #利用切片工具,选出感兴趣roi区域
# cv2.imshow("show",roi)
rows, cols, _ = roi.shape #保存视频尺寸以备用
gray_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) #转灰度
gray_roi = cv2.GaussianBlur(gray_roi, (7, 7), 0) #高斯滤波一次
_, threshold = cv2.threshold(gray_roi, 8, 255, cv2.THRESH_BINARY_INV) #二值化,依据需要改变阈值
contours, _ = cv2.findContours(threshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #画连通域
contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True)
for cnt in contours:
(x, y, w, h) = cv2.boundingRect(cnt)
#cv2.drawContours(roi, [cnt], -1, (0, 0, 255), 3)
cv2.rectangle(roi, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.line(roi, (x + int(w/2), 0), (x + int(w/2), rows), (0, 255, 0), 2)
cv2.line(roi, (0, y + int(h/2)), (cols, y + int(h/2)), (0, 255, 0), 2)
break
cv2.imshow("Roi", roi)
cv2.imshow("Threshold", threshold)
key = cv2.waitKey(30)
if cv2.waitKey(1) & 0xff == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
效果如下