使用python+Opencv实现瞳孔识别与跟踪

使用opencv做瞳孔识别是十分方便的,它有很多好用的库可以直接使用。
废话不多说,直接上代码。

import cv2
import numpy as np

cap = cv2.VideoCapture("eyes.mp4")

while (True):
    ret, frame = cap.read()
    if ret is False:
        break
    roi = frame[100: 500, 157: 800]  #利用切片工具,选出感兴趣roi区域
  #  cv2.imshow("show",roi)
    
    rows, cols, _ = roi.shape   #保存视频尺寸以备用
    gray_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)   #转灰度
    gray_roi = cv2.GaussianBlur(gray_roi, (7, 7), 0)    #高斯滤波一次

    _, threshold = cv2.threshold(gray_roi, 8, 255, cv2.THRESH_BINARY_INV)  #二值化,依据需要改变阈值
    contours, _ = cv2.findContours(threshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #画连通域
    contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True)

    for cnt in contours:
        (x, y, w, h) = cv2.boundingRect(cnt)

        #cv2.drawContours(roi, [cnt], -1, (0, 0, 255), 3)
        cv2.rectangle(roi, (x, y), (x + w, y + h), (255, 0, 0), 2)
        cv2.line(roi, (x + int(w/2), 0), (x + int(w/2), rows), (0, 255, 0), 2)
        cv2.line(roi, (0, y + int(h/2)), (cols, y + int(h/2)), (0, 255, 0), 2)
        break

    cv2.imshow("Roi", roi)
    cv2.imshow("Threshold", threshold)
    key = cv2.waitKey(30)
    if cv2.waitKey(1) & 0xff == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

效果如下

python中让眼睛怎么动 python眼球追踪_python中让眼睛怎么动