一、字符串与整型数字的转换介绍
根据上图WAV格式,数据头里面的数据有大端数据有小端数据,python读出的文件都是字符串,所以处理这个二进制文件,就需要将字符转换为整型了。
(1)按小端模式将字符串转为short类型(转hex默认是小端)
>>> struct.unpack('h','\x01\x02')
(513,) # 相当于0x0201 0x02*256+0x01
(2)按大端模式将字符串转为short类型
>>> struct.unpack('>h','\x01\x02')
(258,) # 相当于0x0102 0x01*256+0x02
二、操作一个wav文件(txt为文本文件,其他一般都为二进制文件)
1、打开一个wav文件(以二进制打开),根据wav数据格式,前44字节为此文件的相关信息数据
>>> f = open(r'C:\视频\python高效实践技巧笔记\08-海棠酒满.wav','rb')
>>> info = f.read(44)
>>> info
'RIFF{\x0bK\x03WAVEfmt \x12\x00\x00\x00\x01\x00\x02\x00D\xac\x00\x00\x10\xb1\x02\x00\x04\x00\x10\x00\x00\x00data`\x06'
2、根据wav格式文件文件头获取相关数据
(1)第22和23字节 为小端数据 的声道数,因为两个字节转成short,所以用”h”(转为short)或”H”(转为unsigned short)
>>> soundNum = struct.unpack('h',info[22:24])
>>> soundNum
(2,)
(2)第24到27字节为小端数据的 采样频率,因为是四个字节转为int,所以用”i”(转为int)或”I”(转为unsigned int)
>>> sampfre = struct.unpack('i',info[24:28])
>>> sampfre
(44100,)
(3)第34和35字节是小端数据的 编码宽度
>>> bitspersample = struct.unpack('h',info[34:36])
>>> bitspersample
(16,)
3、根据wav格式文件data数据部分获取相关数据
读取44字节之后的data数据部分时,不希望是读出的字符串形式,字符串不能支持数学运算,不方便数学处理。读入到类似C语言的每种数据类型的数组中,比如根据每个采样的位宽两个字节,创建short类型的数组,将数据都传入到数组中去。
(1)要生成一个数组,先计算数据的大小。计算文件的大小,其中一个小算法是把文件指针移到文件末尾,再显示文件指针位置,即为文件的字节数。
>>> f.seek(0,2) #将文件指针移到末尾
>>> f.tell() #将显示文件指针位置
55249796L
>>> n = (f.tell() - 44) / 2
>>> n
27624876L
这里因为要保存到short类型的数组,所以创建数组的大小(长度)就要是字节数除以2。
(2)创建一个数组,利用生成式将数组的元素都清为0
>>> import array
uwArrBuf = array.array('h',(0 for _ in xrange(n)))
(3)创建好数组后,将文件的数据读入到数组中
>>> help(f.readinto)
Help on built-in function readinto:
readinto(...)
readinto() -> Undocumented. Don't use this; it may go away.
help(f.readinto)
>>> f.seek(44) #刚才将文件指针移到了末尾,现将文件指针移到数据的位置来
>>>
>>> f.readinto(uwArrBuf) #将文件中的数据读入到数组中.
55249752
>>>
>>> uwArrBuf[100]
8
>>> uwArrBuf[200]
-6
>>>
4、对文件数据操作
接下来就可以对文件数据进行操作了。如我们可以把每个采样数据变小,就能减小声音了。
>>> for i in xrange(n):
uwArrBuf[i] /=8
5、新建一个文件,把文件数据另存
>>> f2 = open(r'C:\视频\python高效实践技巧笔记\08-demo.wav','wb')
>>> f2.write(info) #将音频信息写入文件中
>>> uwArrBuf.tofile(f2) #将数组中的数据写入文件中
>>> f2.close()
>>> help(uwArrBuf.tofile)
Help on built-in function tofile:
tofile(...)
tofile(f)
Write all items (as machine values) to the file object f. Also called as
write.
help(uwArrBuf.tofile)
三、相关知识
Python使用struct处理二进制
有的时候需要用python处理二进制数据,比如,存取文件,socket操作时.这时候,可以使用python的struct模块来完成.可以用 struct来处理c语言中的结构体.
struct模块中最重要的三个函数是pack(), unpack(), calcsize()
pack(fmt, v1, v2, ...) 按照给定的格式(fmt),把数据封装成字符串(实际上是类似于c结构体的字节流)
unpack(fmt, string) 按照给定的格式(fmt)解析字节流string,返回解析出来的tuple
calcsize(fmt) 计算给定的格式(fmt)占用多少字节的内存
struct中支持的格式如下表:
Format | C Type | Python | 字节数 |
x | pad byte | no value | 1 |
c | char | string of length 1 | 1 |
b | signed char | integer | 1 |
B | unsigned char | integer | 1 |
? | _Bool | bool | 1 |
h | short | integer | 2 |
H | unsigned short | integer | 2 |
i | int | integer | 4 |
I | unsigned int | integer or long | 4 |
l | long | integer | 4 |
L | unsigned long | long | 4 |
q | long long | long | 8 |
Q | unsigned long long | long | 8 |
f | float | float | 4 |
d | double | float | 8 |
s | char[] | string | 1 |
p | char[] | string | 1 |
P | void * | long |
|
注1.q和Q只在机器支持64位操作时有意思
注2.每个格式前可以有一个数字,表示个数
注3.s格式表示一定长度的字符串,4s表示长度为4的字符串,但是p表示的是pascal字符串
注4.P用来转换一个指针,其长度和机器字长相关
注5.最后一个可以用来表示指针类型的,占4个字节
为了同c中的结构体交换数据,还要考虑有的c或c++编译器使用了字节对齐,通常是以4个字节为单位的32位系统,故而struct根据本地机器字节顺序转换.可以用格式中的第一个字符来改变对齐方式.定义如下:
Character | Byte order | Size and alignment |
@ | native | native 凑够4个字节 |
= | native | standard 按原字节数 |
< | little-endian | standard 按原字节数 |
> | big-endian | standard 按原字节数 |
! | network (= big-endian) | standard 按原字节数 |
使用方法是放在fmt的第一个位置,就像'@5s6sif'
示例一:
比如有一个结构体
struct Header
{
unsigned short id;
char[4] tag;
unsigned int version;
unsigned int count;
}
通过socket.recv接收到了一个上面的结构体数据,存在字符串s中,现在需要把它解析出来,可以使用unpack()函数.
import struct
id, tag, version, count = struct.unpack("!H4s2I", s)
上面的格式字符串中,!表示我们要使用网络字节顺序解析,因为我们的数据是从网络中接收到的,在网络上传送的时候它是网络字节顺序的.后面的H表示 一个unsigned short的id,4s表示4字节长的字符串,2I表示有两个unsigned int类型的数据.
就通过一个unpack,现在id, tag, version, count里已经保存好我们的信息了.
同样,也可以很方便的把本地数据再pack成struct格式.
ss = struct.pack("!H4s2I", id, tag, version, count);
pack函数就把id, tag, version, count按照指定的格式转换成了结构体Header,ss现在是一个字符串(实际上是类似于c结构体的字节流),可以通过 socket.send(ss)把这个字符串发送出去.
示例二:
import struct
a=12.34
#将a变为二进制
bytes=struct.pack('i',a)
此时bytes就是一个string字符串,字符串按字节同a的二进制存储内容相同。
再进行反操作
现有二进制数据bytes,(其实就是字符串),将它反过来转换成python的数据类型:
a,=struct.unpack('i',bytes)
注意,unpack返回的是tuple
所以如果只有一个变量的话:
bytes=struct.pack('i',a)
那么,解码的时候需要这样
a,=struct.unpack('i',bytes) 或者 (a,)=struct.unpack('i',bytes)
如果直接用a=struct.unpack('i',bytes),那么 a=(12.34,) ,是一个tuple而不是原来的浮点数了。
如果是由多个数据构成的,可以这样:
a='hello'
b='world!'
c=2
d=45.123
bytes=struct.pack('5s6sif',a,b,c,d)
此时的bytes就是二进制形式的数据了,可以直接写入文件比如 binfile.write(bytes)
然后,当我们需要时可以再读出来,bytes=binfile.read()
再通过struct.unpack()解码成python变量
a,b,c,d=struct.unpack('5s6sif',bytes)
'5s6sif'这个叫做fmt,就是格式化字符串,由数字加字符构成,5s表示占5个字符的字符串,2i,表示2个整数等等,下面是可用的字符及类型,ctype表示可以与python中的类型一一对应。
注意:二进制文件处理时会碰到的问题
我们使用处理二进制文件时,需要用如下方法
binfile=open(filepath,'rb') 读二进制文件
binfile=open(filepath,'wb') 写二进制文件
那么和binfile=open(filepath,'r')的结果到底有何不同呢?
不同之处有两个地方:
第一,使用'r'的时候如果碰到'0x1A',就会视为文件结束,这就是EOF。使用'rb'则不存在这个问题。即,如果你用二进制写入再用文本读出的话,如果其中存在'0X1A',就只会读出文件的一部分。使用'rb'的时候会一直读到文件末尾。
第二,对于字符串x='abc\ndef',我们可用len(x)得到它的长度为7,\n我们称之为换行符,实际上是'0X0A'。当我们用'w'即文本方式写的时候,在windows平台上会自动将'0X0A'变成两个字符'0X0D','0X0A',即文件长度实际上变成8.。当用'r'文本方式读取时,又自动的转换成原来的换行符。如果换成'wb'二进制方式来写的话,则会保持一个字符不变,读取时也是原样读取。所以如果用文本方式写入,用二进制方式读取的话,就要考虑这多出的一个字节了。'0X0D'又称回车符。linux下不会变。因为linux只使用'0X0A'来表示换行。