目录



  • Pandas
  • Data Structure
  • Series
  • DataFrame
  • Index Objects
  • Essential Functionality
  • Reindex
  • Dropping Entries from an Axis
  • Indexing, Selection, and Filtering
  • Selection with loc and iloc
  • Integer Indexing
  • Arithmetic and Data Alignment



Pandas


Data Structure

Series

A Series is a one-dimensional array-like object containing a sequence of values (of similar types to NumPy types) and an associated array of data labels, called its index.

Series 是一个一维的 array-like object,包含了一个值序列,(类型与 Numpy 类型相同),以及一个相关联的数据标签数组,叫做索引(index)

import pandas as pd
obj1 = pd.Series([4,7,-5,3])
obj2 = pd.Serise([4,7,-5,3], index = ['d','b','a','c'])
#access value or set of values in Serise by lebal in index
obj2['d'] # 4
obj2[['c','a','b']]
import pandas as pd
obj1 = pd.Series([4,7,-5,3])
obj2 = pd.Serise([4,7,-5,3], index = ['d','b','a','c'])
#access value or set of values in Serise by lebal in index
obj2['d'] # 4
obj2[['c','a','b']]

Series也可以被理解为一个有序的字典。

sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
obj3 = pd.Series(sdata)
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
obj3 = pd.Series(sdata)
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64

同样可以通过显示的给index赋值一个label list来改变index

构造函数中修改index

states = ['California', 'Ohio', 'Oregon', 'Texas']
obj4 = pd.Series(sdata, index = states)
states = ['California', 'Ohio', 'Oregon', 'Texas']
obj4 = pd.Series(sdata, index = states)
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64

通过instance method来修改index:

In [41]: obj
Out[41]:
0 4
1 7
2 -5
3 3
dtype: int64
In [42]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [43]: obj
Out[43]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64
In [41]: obj
Out[41]:
0 4
1 7
2 -5
3 3
dtype: int64
In [42]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [43]: obj
Out[43]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

isnull方法用来检测Series中每个元素是否为空(NaN:Not a Number)

pd.isnull(obj4) 
# 等价于 obj4.isnull
#Output
California True
Ohio False
Oregon False
Texas False
dtype: bool  
pd.isnull(obj4) 
# 等价于 obj4.isnull
#Output
California True
Ohio False
Oregon False
Texas False
dtype: bool

一个有用的特性是,两个Series之间进行数学运算时,会通过 index 自动关联起来。

In [35]: obj3
Out[35]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
In [36]: obj4
Out[36]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
In [37]: obj3 + obj4
Out[37]:
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64

Series本身以及其索引都是具有name的。

In [38]: obj4.name = 'population'
In [39]: obj4.index.name = 'state'
In [40]: obj4
Out[40]:
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
In [38]: obj4.name = 'population'
In [39]: obj4.index.name = 'state'
In [40]: obj4
Out[40]:
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64

DataFrame

A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.). The DataFrame has both a row and column index; it can be thought of as a dict of Series all sharing the same index.

DataFrame 代表一个数据表格,其中包含了一个有序的 columns 集合,每个列可以是不同的数据类型。DataFrame 同时具有行索引和列索引。它可以被理解为是一个由Series组成的字典,所有的Series共享一个索引。

构建一个DataFrame最简单的方式是通过一个 由相同长度list组成的字典来产生DataFrame

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)

构造得到的DataFrame会自动给index赋值,并且columns被自动排序。

state   year    pop
0   Ohio    2000    1.5
1   Ohio    2001    1.7
2   Ohio    2002    3.6
3   Nevada  2001    2.4
4   Nevada  2002    2.9
5   Nevada  2003    3.2

如果在构造的时候指定了columns的顺序,那么就会按照指定的顺序排列。

frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop'])
frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop'])
year    state   pop
0   2000    Ohio    1.5
1   2001    Ohio    1.7
2   2002    Ohio    3.6
3   2001    Nevada  2.4
4   2002    Nevada  2.9
5   2003    Nevada  3.2

通过类似字典访问的语法,可以从DataFrame中抽取出一个Series

frame2['pop']
frame2['pop']
0    1.5
1    1.7
2    3.6
3    2.4
4    2.9
5    3.2
Name: pop, dtype: float64
frame2.year
frame2.year
0    2000
1    2001
2    2002
3    2001
4    2002
5    2003
Name: year, dtype: int64

可以通过赋值操作来添加或者修改columns的值。Assigning a column that doesn’t exist will create a new column. 如果是用list或者array来给column赋值,那么其长度必须等于DataFrame的长度。

frame2['debt'] = 6.5
frame2['debt'] = 6.5
year    state   pop debt
0   2000    Ohio    1.5 6.5
1   2001    Ohio    1.7 6.5
2   2002    Ohio    3.6 6.5
3   2001    Nevada  2.4 6.5
4   2002    Nevada  2.9 6.5
5   2003    Nevada  3.2 6.5
frame2['debt'] = np.arange(6.)
frame2['debt'] = np.arange(6.)
year    state   pop debt
0   2000    Ohio    1.5 0.0
1   2001    Ohio    1.7 1.0
2   2002    Ohio    3.6 2.0
3   2001    Nevada  2.4 3.0
4   2002    Nevada  2.9 4.0
5   2003    Nevada  3.2 5.0

如果是用 Series 来赋值,那么 Series 的索引将会被重组与 DataFrame的索引对应,如果不对应,那么相应的值为NaN

frame2.index = ['zero', 'one', 'two', 'three', 'four', 'five']
val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
frame2.debt = val
frame2.index = ['zero', 'one', 'two', 'three', 'four', 'five']
val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
frame2.debt = val
year    state   pop debt
zero    2000    Ohio    1.5 NaN
one     2001    Ohio    1.7 NaN
two     2002    Ohio    3.6 -1.2
three   2001    Nevada  2.4 NaN
four    2002    Nevada  2.9 -1.5
five    2003    Nevada  3.2 -1.7

del 可以用来删除 column

嵌套形式的字典作为数据传递给DataFrame时,pandas会将外层关键字作为columns,将内层关键字作为 row index

pop = {'Nevada': {2001: 2.4, 2002: 2.9},'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
df3 = pd.DataFrame(pop)
pop = {'Nevada': {2001: 2.4, 2002: 2.9},'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
df3 = pd.DataFrame(pop)
Nevada  Ohio
2000    NaN     1.5
2001    2.4     1.7
2002    2.9     3.6

可以使用类似NumPy数组的方式来对DataFrame进行翻转。

df3.T
        2000    2001    2002
Nevada  NaN     2.4     2.9
Ohio    1.5     1.7     3.6
df3.T
        2000    2001    2002
Nevada  NaN     2.4     2.9
Ohio    1.5     1.7     3.6

DataFrame的 values 方式将 DataFrame 中的值放在一个二维的 NumPy Array 中返回。

df3.values
array([[nan, 1.5],
       [2.4, 1.7],
       [2.9, 3.6]])
df3.values
array([[nan, 1.5],
       [2.4, 1.7],
       [2.9, 3.6]])
Possible data inputs to DataFrame constructor

Type

Notes

2D ndarray

行和列的标签为可选参数

dict of arrays, lists,or tuples

每个sequence成为DataFrame中的一个列;所有的sequence必须长度相同

NumPy Structured/record array

按照”dict of arrays"处理

dict of Series

dict中的每个Series成为一个列;如果没有显示规定index,那么所有Series的index成为DataFrame的row index

dict of dicts

每个内部dict成为一个列;所有内部dict的 keys 组成row index,外层dict的keys组成column index

List of dicts or Series

每一个item成为DataFrame中的一个行;union of dict keys or Series indexes 成为DataFrame的列标签

List of lists or tuples

处理方式与2D ndarray相同

Another DataFrame

除非显示改变index,否则使用源DataFrame的index

几个例子:

# dict of Series
s1 = pd.Series([1,2,3], index=['one','two','three'])
s2 = pd.Series([4,5,6])
s3 = pd.Series([7,8,9])
dic = {'s1':s1,'s2':s2,'s3':s3}
df = pd.DataFrame(dic)
df
        s1  s2  s3
one     1.0 NaN NaN
two     2.0 NaN NaN
three   3.0 NaN NaN
0       NaN 4.0 7.0
1       NaN 5.0 8.0
2       NaN 6.0 9.0
# dict of Series
s1 = pd.Series([1,2,3], index=['one','two','three'])
s2 = pd.Series([4,5,6])
s3 = pd.Series([7,8,9])
dic = {'s1':s1,'s2':s2,'s3':s3}
df = pd.DataFrame(dic)
df
        s1  s2  s3
one     1.0 NaN NaN
two     2.0 NaN NaN
three   3.0 NaN NaN
0       NaN 4.0 7.0
1       NaN 5.0 8.0
2       NaN 6.0 9.0
# dict of dicts
d1 = {'one':1,'two':2}
d2 = {'three':3,'four':4}
dic = {'A':d1, 'B':d2}
df = pd.DataFrame(dic)
df
        A   B
four    NaN 4.0
one     1.0 NaN
three   NaN 3.0
two     2.0 NaN
# dict of dicts
d1 = {'one':1,'two':2}
d2 = {'three':3,'four':4}
dic = {'A':d1, 'B':d2}
df = pd.DataFrame(dic)
df
        A   B
four    NaN 4.0
one     1.0 NaN
three   NaN 3.0
two     2.0 NaN

Index Objects

pandas’s Index objects are responsible for holding the axis labels and other metadata

Index objects 是不可变对象,因此通过pd.Index构造函数来构造一个Index objects可以安全地创建不同的Series或者DataFrame

Index object 除了可以当作数组使用,也可以像固定大小的set一样使用。不同之处在于其中可以有相同的元素。

Essential Functionality

Reindex

obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])
obj2 = obj.reindex(['a','b','c','d','e'])
obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])
obj2 = obj.reindex(['a','b','c','d','e'])
a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64

reindex 方式的可选参数 method 可以规定 reindex 时添加元素的规则,ffill表示 forward fill

obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
obj4 = obj3.reindex(range(6), method = 'ffill')
obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
obj4 = obj3.reindex(range(6), method = 'ffill')
0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow
dtype: object

作用于DataFrame对象,当只传递一个 sequence 时默认对 row index 重排。

frame = pd.DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'], columns=['Ohio', 'Texas', 'California'])
frame = pd.DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'], columns=['Ohio', 'Texas', 'California'])
Ohio Texas California
a       0    1          2
c       3    4          5
d       6    7          8
frame2 = frame.reindex(['a', 'b', 'c', 'd'])
frame2 = frame.reindex(['a', 'b', 'c', 'd'])
Ohio    Texas       California
a   0.0     1.0         2.0
b   NaN     NaN         NaN
c   3.0     4.0         5.0
d   6.0     7.0         8.0

对列序列的 reindex 可以显示地给 column 传值

states = [['Texas', 'Utah', 'California']
frame2.reindex(columns = states)
states = [['Texas', 'Utah', 'California']
frame2.reindex(columns = states)

Dropping Entries from an Axis

drop method 可以用于 Series 和 DataFrame,用于 Series 比较简单。

With DataFrame, index values can be deleted from either axis.

Calling drop with a sequence of labels will drop values from the row labels(axis 0).

传递的参数如果是一个 sequence of labels,那么将会从 row lebels (axis 0) 中删除对应的标签。

data = pd.DataFrame(np.arange(16).reshape((4, 4)),\
                    index=['Ohio', 'Colorado', 'Utah', 'New York'],\
                    columns=['one', 'two', 'three', 'four'])

            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15

data = pd.DataFrame(np.arange(16).reshape((4, 4)),\
                    index=['Ohio', 'Colorado', 'Utah', 'New York'],\
                    columns=['one', 'two', 'three', 'four'])

            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15
data.drop(['Colorado', 'Ohio'])
            one two three   four
Utah        8   9   10      11
New York    12  13  14      15
data.drop(['Colorado', 'Ohio'])
            one two three   four
Utah        8   9   10      11
New York    12  13  14      15

可以通过显式地给参数axis赋值来规定从个坐标轴drop values

data.drop('two', axis=1)

            one three four
Ohio        0   2       3
Colorado    4   6       7
Utah        8   10      11
New York    12  14      15
data.drop('two', axis=1)

            one three four
Ohio        0   2       3
Colorado    4   6       7
Utah        8   10      11
New York    12  14      15

包括 drop 在内的很多 method 会对原对象进行 in-place modification.

Indexing, Selection, and Filtering

Series

Series 可以被理解为是有序的字典,Series index 与 NumPy Array index 相似,区别在于 Series indexing 可以使用 index values 来进行索引,而不是只能使用整数进行索引。

使用 label 进行切片和普通的 slicing 区别在于最后一个值会被包含。

DataFrame

DataFrame 中 如果 select 使用的是 slicing 或者 boolean array,那么会按行进行数据选择;如果使用单个 label(only column label) 或者 list of labels 进行索引那么会按列进行选择。

如果使用单个 row label 进行select会出错。

data = pd.DataFrame(np.arange(16).reshape((4, 4)),index=['Ohio', 'Colorado', 'Utah', 'New York'],columns=['one', 'two', 'three', 'four'])

            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15

#integer slicing
data[:2]
            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7

#label slicing
data['Ohio':'Utah']
            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11

# select with boolean array
data['three']>5
Ohio        False
Colorado     True
Utah         True
New York     True
Name: three, dtype: bool
data[data['three']>5]
            one two three   four
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15

# select with single label
data['two']
Ohio         1
Colorado     5
Utah         9
New York    13
Name: two, dtype: int32

# select with list of labels
data[['three', 'one']]
            three   one
Ohio        2       0
Colorado    6       4
Utah        10      8
New York    14      12  
data = pd.DataFrame(np.arange(16).reshape((4, 4)),index=['Ohio', 'Colorado', 'Utah', 'New York'],columns=['one', 'two', 'three', 'four'])

            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15

#integer slicing
data[:2]
            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7

#label slicing
data['Ohio':'Utah']
            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11

# select with boolean array
data['three']>5
Ohio        False
Colorado     True
Utah         True
New York     True
Name: three, dtype: bool
data[data['three']>5]
            one two three   four
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15

# select with single label
data['two']
Ohio         1
Colorado     5
Utah         9
New York    13
Name: two, dtype: int32

# select with list of labels
data[['three', 'one']]
            three   one
Ohio        2       0
Colorado    6       4
Utah        10      8
New York    14      12

像二维数组一样,DataFrame 也可以使用 boolean DataFrame 进行选择。

Selection with loc and iloc

前面提到 label indexing 只能使用 column label,如果希望使用 row labels 进行 indexing,那么需要借助 loc 和 iloc 这两个方法。

lociloc的用途在于:使用类似于NumPy中的标记来访问DataFrame中行或者列的子集。

先回顾一下 Numpy 中是如何进行 indexing 的

arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

arr[[1,2]]
array([[3, 4, 5],
       [6, 7, 8]])


arr[ :2, [1,2]]
array([[1, 2],
       [4, 5]])
arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

arr[[1,2]]
array([[3, 4, 5],
       [6, 7, 8]])


arr[ :2, [1,2]]
array([[1, 2],
       [4, 5]])

下面使用loc方式以相似的标记形式来在DataFrame中进行索引,传递给loc的值被理解为label

data
            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15

data.loc['Colorado']
one      4
two      5
three    6
four     7
Name: Colorado, dtype: int32

data.loc['Colorado',['one','two']]
one    4
two    5
Name: Colorado, dtype: int32
data
            one two three   four
Ohio        0   1   2       3
Colorado    4   5   6       7
Utah        8   9   10      11
New York    12  13  14      15

data.loc['Colorado']
one      4
two      5
three    6
four     7
Name: Colorado, dtype: int32

data.loc['Colorado',['one','two']]
one    4
two    5
Name: Colorado, dtype: int32

如果要使用整数进行索引,那么就使用iloc,这里的整数被用作指示位置而不是label。

data.iloc[1]
one      4
two      5
three    6
four     7
Name: Colorado, dtype: int32

data.iloc[1,[0,1]]
one    4
two    5
Name: Colorado, dtype: int32
data.iloc[1]
one      4
two      5
three    6
four     7
Name: Colorado, dtype: int32

data.iloc[1,[0,1]]
one    4
two    5
Name: Colorado, dtype: int32

Integer Indexing

一个很容易出现的bug:

ser = pd.Series(np.arange(3.))
ser
0    0.0
1    1.0
2    2.0
dtype: float64

# BUG
ser[-1]
ser = pd.Series(np.arange(3.))
ser
0    0.0
1    1.0
2    2.0
dtype: float64

# BUG
ser[-1]

按照Python内置数据结构中的索引逻辑,这里应该返回 Series 中的最后一行才是,但是实际上会报错。

这是因为这里 Series 中的 index value 是整数,

ser.index.dtype
dtype('int64')
ser.index.dtype
dtype('int64')

当使用同样为整数的 -1 作为索引时,会将 -1 实际上理解成一个 label,在 index object 中去寻找整数 -1,因此出错。

如果我们不使用整数作为index value dtype,那么就可以避免这种情况。

ser = pd.Series(np.arange(3.), index = ['a','b','c'])
ser[-1]
2.0
ser = pd.Series(np.arange(3.), index = ['a','b','c'])
ser[-1]
2.0

从保持一致性的角度来说,最好的方式是我们使用lociloc来明确 index 的方式

ser = pd.Series(np.arange(3.))
ser.iloc(-1)
2
#ser.loc(-1) 会出错
ser = pd.Series(np.arange(3.))
ser.iloc(-1)
2
#ser.loc(-1) 会出错

传递给loc的所有值都被理解为label
传递给iloc的整数被用作指示位置而不是label

Arithmetic and Data Alignment

对于Pandas中基本数据结构之间的算术运算,如果具有相同的index,那么他们之间进行正常运算,对于不同的index,则执行类似并集的操作。

s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1],index=['a', 'c', 'e', 'f', 'g'])

s1 + s2
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN
dtype: float64

df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'), \
                index=['Ohio', 'Texas', 'Colorado'])
df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),\
                index=['Utah', 'Ohio', 'Texas', 'Oregon'])

df1 + df2 
            b   c   d   e
Colorado    NaN NaN NaN NaN
Ohio        3.0 NaN 6.0 NaN
Oregon      NaN NaN NaN NaN
Texas       9.0 NaN 12.0 NaN
Utah        NaN NaN NaN NaN
s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1],index=['a', 'c', 'e', 'f', 'g'])

s1 + s2
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN
dtype: float64

df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'), \
                index=['Ohio', 'Texas', 'Colorado'])
df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),\
                index=['Utah', 'Ohio', 'Texas', 'Oregon'])

df1 + df2 
            b   c   d   e
Colorado    NaN NaN NaN NaN
Ohio        3.0 NaN 6.0 NaN
Oregon      NaN NaN NaN NaN
Texas       9.0 NaN 12.0 NaN
Utah        NaN NaN NaN NaN

如果想自定义fill_value:

df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),\
                    columns=list('abcd'))
df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),\
                    columns=list('abcde'))

df2.loc[1, 'b'] = np.nan

df1
    a   b   c   d
0   0.0 1.0 2.0 3.0
1   4.0 5.0 6.0 7.0
2   8.0 9.0 10.0 11.0

df2
    a       b       c       d       e
0   0.0     1.0     2.0     3.0     4.0
1   5.0     NaN     7.0     8.0     9.0
2   10.0    11.0    12.0    13.0    14.0
3   15.0    16.0    17.0 1  8.0     19.0

df1.add(df2, fill_value=0)
    a       b       c       d       e
0   0.0     2.0     4.0     6.0     4.0
1   9.0     5.0     13.0    15.0    9.0
2   18.0    20.0    22.0    24.0    14.0
3   15.0    16.0    17.0    18.0    19.0
df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),\
                    columns=list('abcd'))
df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),\
                    columns=list('abcde'))

df2.loc[1, 'b'] = np.nan

df1
    a   b   c   d
0   0.0 1.0 2.0 3.0
1   4.0 5.0 6.0 7.0
2   8.0 9.0 10.0 11.0

df2
    a       b       c       d       e
0   0.0     1.0     2.0     3.0     4.0
1   5.0     NaN     7.0     8.0     9.0
2   10.0    11.0    12.0    13.0    14.0
3   15.0    16.0    17.0 1  8.0     19.0

df1.add(df2, fill_value=0)
    a       b       c       d       e
0   0.0     2.0     4.0     6.0     4.0
1   9.0     5.0     13.0    15.0    9.0
2   18.0    20.0    22.0    24.0    14.0
3   15.0    16.0    17.0    18.0    19.0