Java类和对象的生命周期
类的生命周期
java类的生命周期就是指一个class文件从加载到卸载的全过程。
类的完整生命周期包括7个部分:加载——验证——准备——解析——初始化——使用——卸载
jvm(java虚拟机)中的几个比较重要的内存区域
方法区:在java的虚拟机中有一块专门用来存放已经加载的类信息、常量、静态变量以及方法 代码的内存区域,叫做方法区。
常量池:常量池是方法区的一部分,主要用来存放常量和类中的符号引用等信息。
堆区:用于存放类的对象实例。
栈区:也叫java虚拟机栈,是由一个一个的栈帧组成的后进先出的栈式结构,栈桢中存放方法运行时产生的局部变量、方法出口等信息。当调用一个方法时,虚拟机栈中就会创建一个栈帧存放这些数据,当方法调用完成时,栈帧消失,如果方法中调用了其他方法,则继续在栈顶创建新的栈桢。
1.加载
虚拟机需要完成三件事:通过类名字获取类的二进制字节流——将字节流的内容转存到方法区——在内存中生成一个Class对象作为该类方法区数据的访问入口。
其中,获取类的二进制字节流是通过类加载器完成的,其加载过程使用“双亲委派模型”
类加载器的层次结构为:
启动类加载器(BootStrapClassLoader):加载系统环境变量下JAVA_HOME/lib目录下的类库。
扩展类加载器(ExtensionClassader):加载JAVA_HOME/lib/ext目录下的类库。
应用程序类加载器(ApplicationClassader)(系统类加载器):加载用户类路径Class_Path指定的类库。(我们可以在使用第三方插件时,把jar包添加到ClassPath后就是使用了这个加载器)
自定义加载器(UserClassLoader):如果需要自定义加载时的规则(比如:指定类的字节流来源、动态加载时性能优化等),可以自己实现类加载器。
双亲委派模型是指:当一个类加载器收到类加载请求时,不会直接加载这个类,而是把这个加载请求委派给自己父加载器去完成。如果父加载器无法加载时,子加载器才会去尝试加载。
采用双亲委派模型的原因:避免同一个类被多个类加载器重复加载。
2:验证
当一个类被加载之后,必须要验证一下这个类是否合法,比如这个类是不是符合字节码的格式、变量与方法是不是有重复、数据类型是不是有效、继承与实现是否合乎标准等等。总之,这个阶段的目的就是保证加载的类是能够被jvm所运行。
3:准备
为类变量(静态变量)在方法区分配内存,并设置零值。注意:这里是类变量,不是实例变量,实例变量是对象分配到堆内存时根据运行时动态生成的。
4:解析
把常量池中的符号引用解析为直接引用:根据符号引用所作的描述,在内存中找到符合描述的目标并把目标指针指针返回。
5:初始化
类的初始化过程是这样的:按照顺序自上而下运行类中的变量赋值语句和静态语句,如果有父类,则首先按照顺序运行父类中的变量赋值语句和静态语句。
在类的初始化阶段,只会初始化与类相关的静态赋值语句和静态语句,也就是有static关键字修饰的信息,而没有static修饰的赋值语句和执行语句在实例化对象的时候才会运行。
6:使用
使用
类的使用包括主动引用和被动引用:
主动引用:
也叫类的初始化触发
类的加载机制没有明确的触发条件,但是有5种情况下必须对类进行初始化,那么 加载——验证——准备 就必须在此之前完成了。
①:通过new关键字实例化对象、读取或设置类的静态变量、调用类的静态方法。
②:通过反射方式执行以上三种行为。
③:初始化子类的时候,会触发父类的初始化。
④:虚拟机启动时,初始化一个执行主类;(作为程序入口直接运行时(也就是直接调用main方法)。)
⑤:使用jdk1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、RE_invokeStatic的方法句柄,并且这个方法句柄对应的类没有进行初始化,则需要先触发其初始化。
注意,有且只有五种情况必须对类进行初始化,这五种情况被称为“主动引用”,除了这五种情况,所有其他的类引用方式都不会触发类初始化,被称为“被动引用”。
主动引用代码示例:
import java.lang.reflect.Field;
import java.lang.reflect.Method;
class InitClass{
static {
System.out.println("初始化InitClass");
}
public static String a = null;
public static void method(){}
}
class SubInitClass extends InitClass{}
public class Test1 {
/**
* 主动引用引起类的初始化的第四种情况就是运行Test1的main方法时
* 导致Test1初始化,这一点很好理解,就不特别演示了。
* 本代码演示了前三种情况,以下代码都会引起InitClass的初始化,
* 但由于初始化只会进行一次,运行时请将注解去掉,依次运行查看结果。
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception{
// 主动引用引起类的初始化一: new对象、读取或设置类的静态变量、调用类的静态方法。
// new InitClass();
// InitClass.a = "";
// String a = InitClass.a;
// InitClass.method();
// 主动引用引起类的初始化二:通过反射实例化对象、读取或设置类的静态变量、调用类的静态方法。
// Class cls = InitClass.class;
// cls.newInstance();
// Field f = cls.getDeclaredField("a");
// f.get(null);
// f.set(null, "s");
// Method md = cls.getDeclaredMethod("method");
// md.invoke(null, null);
// 主动引用引起类的初始化三:实例化子类,引起父类初始化。
// new SubInitClass();
}
}
被动引用:
①.引用父类的静态字段,只会引起父类的初始化,而不会引起子类的初始化
②: 定义类数组,不会引起类的初始化
③.引用类的常量,不会引起类的初始化
被动代码示例:
class InitClass{
static {
System.out.println("初始化InitClass");
}
public static String a = null;
public final static String b = "b";
public static void method(){}
}
class SubInitClass extends InitClass{
static {
System.out.println("初始化SubInitClass");
}
}
public class Test4 {
public static void main(String[] args) throws Exception{
// String a = SubInitClass.a;// 引用父类的静态字段,只会引起父类初始化,而不会引起子类的初始化
// String b = InitClass.b;// 使用类的常量不会引起类的初始化
SubInitClass[] sc = new SubInitClass[10];// 定义类数组不会引起类的初始化
}
}
7:卸载
在类使用完之后,如果满足下面的情况,类就会被卸载:
- 该类所有的实例都已经被回收,也就是java堆中不存在该类的任何实例。
- 加载该类的ClassLoader已经被回收。
- 该类对应的java.lang.Class对象没有任何地方被引用,无法在任何地方通过反射访问该类的方法。
如果以上三个条件全部满足,jvm就会在方法区垃圾回收的时候对类进行卸载,类的卸载过程其实就是在方法区中清空类信息,java类的整个生命周期就结束了。
Java对象的生命周期
在JVM运行空间中,对象的整个生命周期大致可以分为7个阶段:创建阶段(Creation)、应用阶段(Using)、不可视阶段(Invisible)、不可到达阶段(Unreachable)、可收集阶段(Collected)、终结阶段(Finalized)与释放阶段(Free)。上面的这7个阶段,构成了 JVM中对象的完整的生命周期。下面分别介绍对象在处于这7个阶段时的不同情形。
1.创建阶段
在对象创建阶段,系统要通过下面的步骤,完成对象的创建过程:
(1)为对象分配存储空间。
(2)开始构造对象。
(3)递归调用其超类的构造方法。(即父类)
(4)进行对象实例初始化与变量初始化。
(5)执行构造方法体。
下面是在创建对象时的几个关键应用规则:
(1)避免在循环体中创建对象,即使该对象占用内存空间不大。
(2)尽量及时使对象符合垃圾回收标准。
(3)不要采用过深的继承层次。
(4)访问本地变量优于访问类中的变量。
2.应用阶段
当对象的创建阶段结束之后,该对象通常就会进入对象的应用阶段。这个阶段是对象得以表现自身能力的阶段。也就是说对象的应用阶段是对象整个生命周期中证明自身“存在价值”的时期。在对象的应用阶段,对象具备下列特征:
◆系统至少维护着对象的一个强引用(Strong Reference);
◆所有对该对象的引用全部是强引用(除非我们显式地使用了:软引用(Soft Reference)、弱引用(Weak Reference)或虚引用(Phantom Reference))。
上面提到了几种不同的引用类型。可能一些读者对这几种引用的概念还不是很清楚,下面分别对之加以介绍。在讲解这几种不同类型的引用之前,我们必须先了解一下Java中对象引用的结构层次。
Java对象引用的结构层次示意如图2-6所示。
图2-6 对象引用的结构层次示意
由图2-6我们不难看出,上面所提到的几种引用的层次关系,其中强引用处于顶端,而虚引用则处于底端。下面分别予以介绍。
(1) 强引用
强引用(Strong Reference)是指JVM内存管理器从根引用集合(Root Set)出发遍寻堆中所有到达对象的路径。当到达某对象的任意路径都不含有引用对象时,对这个对象的引用就被称为强引用。
(2) 软引用
软引用(Soft Reference)的主要特点是具有较强的引用功能。只有当内存不够的时候,才回收这类内存,因此在内存足够的时候,它们通常不被回收。另外,这些引用对象还能保证在Java抛出OutOfMemory 异常之前,被设置为null。它可以用于实现一些常用资源的缓存,实现Cache的功能,保证最大限度的使用内存而不引起OutOfMemory。再者,软可到达对象的所有软引用都要保证在虚拟机抛出OutOfMemoryError
之前已经被清除。否则,清除软引用的时间或者清除不同对象的一组此类引用的顺序将不受任何约束。然而,虚拟机实现不鼓励清除最近访问或使用过的软引用。
(3) 弱引用
弱引用(Weak Reference)对象与Soft引用对象的最大不同就在于:GC在进行回收时,需要通过算法检查是否回收Soft引用对象,而对于Weak引用对象, GC总是进行回收。因此Weak引用对象会更容易、更快被GC回收。虽然,GC在运行时一定回收Weak引用对象,但是复杂关系的Weak对象群常常需要好几次GC的运行才能完成。Weak引用对象常常用于Map数据结构中,引用占用内存空间较大的对象,一旦该对象的强引用为null时,对这个对象引用就不存在了,GC能够快速地回收该对象空间。
(4) 虚引用
虚引用(Phantom Reference)的用途较少,主要用于辅助finalize函数的使用。Phantom对象指一些执行完了finalize函数,并且为不可达对象,但是还没有被GC回收的对象。这种对象可以辅助finalize进行一些后期的回收工作,我们通过覆盖Reference的clear()方法,增强资源回收机制的灵活性。虚引用主要适用于以某种比 java 终结机制更灵活的方式调度 pre-mortem 清除操作。
3.不可视阶段
在一个对象经历了应用阶段之后,那么该对象便处于不可视阶段,说明我们在其他区域的代码中已经不可以再引用它,其强引用已经消失,例如,本地变量超出了其可视范围,如下所示。
4.不可到达阶段
处于不可到达阶段的对象,在虚拟机所管理的对象引用根集合中再也找不到直接或间接的强引用,这些对象通常是指所有线程栈中的临时变量,所有已装载的类的静态变量或者对本地代码接口(JNI)的引用。这些对象都是要被垃圾回收器回收的预备对象,但此时该对象并不能被垃圾回收器直接回收。其实所有垃圾回收算法所面临的问题是相同的——找出由分配器分配的,但是用户程序不可到达的内存块。
5.可收集阶段、终结阶段与释放阶段
对象生命周期的最后一个阶段是可收集阶段、终结阶段与释放阶段。当对象处于这个阶段的时候,可能处于下面三种情况:
(1)垃圾回收器发现该对象已经不可到达。
(2)finalize方法已经被执行。
(3)对象空间已被重用。
当对象处于上面的三种情况时,该对象就处于可收集阶段、终结阶段与释放阶段了。虚拟机就可以直接将该对象回收了。